K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1

loading... a) ∆ABC vuông tại A (gt)

⇒ ∠ABC + ∠ACB = 90⁰

⇒ ∠ACB = 90⁰ - ∠ABC

= 90⁰ - 50⁰

= 40⁰

b) Xét ∆AMB và ∆DMC có:

MA = MD (gt)

∠AMB = ∠DMC (đối đỉnh)

MB = MC (do M là trung điểm của BC)

⇒ ∆AMB = ∆DMC (c-g-c)

c) Do ∆AMB = ∆DMC (cmt)

⇒ ∠ABM = ∠DCM (hai góc tương ứng)

Mà ∠ABM và ∠DCM là hai góc so le trong

⇒ AB // CD

a: Xét ΔMAB và ΔMDC có

MA=MD
góc AMB=góc DMC
MB=MC
=>ΔMAB=ΔMDC

b: ΔMAB=ΔMDC

=>góc MAB=góc MDC

=>AB//CD

c: Xét tư giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

=>ABDC là hình chữ nhật

=>BD vuông góc CD

27 tháng 4 2023

giúp mik vs đang gấp

 

a,

Xét △ABC có:

BC2 = 172 = 289

AB2 + AC2 = 152 + 82 = 225 + 64 = 289

=> BC2 = AB2 + AC2

=> △ABC vuông 

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

 a: Xét ΔAMB và ΔDMC có

MA=MD

góc AMB=góc DMC

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

Do đó: ABDC là hình bình hành

=>BD//AC

c: Xét tứ giác ACBE có

N là trung điểm chung của AB và CE

Do đó: ACBE là hình bình hành

=>BE//AC và BE=AC

ACDB là hình bình hành

=>AC//BD và AC=BD

AC//BD

AC//BE

BD cắt BE tại B

Do đó: D,B,E thẳng hàng

mà BD=BE(=AC)

nên B là trung điểm của DE

13 tháng 5 2017

28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

16 tháng 1

 

a) Xét ΔAMB và ΔDMC có:

\(AM=CM\) (gt) 

\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh) 

\(BM=CM\) (M là trung điểm của BC) 

\(\Rightarrow\text{Δ}AMB=\text{Δ}DMC\left(c.g.c\right)\)

b) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow AB=DC\) (2 cạnh t.ứng)  

c) Ta có: \(\text{Δ}AMB=\text{Δ}DMC\left(cmt\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) (hai góc t.ứng) 

Mà hai góc này ở vị trí so le trong 

\(\Rightarrow AB//CD\)

a) Xét ΔAMB và ΔDMC có

MA=MD(gt)

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔDMC(c-g-c)