K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

a) xét tam giác ABC vuông tại A, có:

AB = AC (gt)

=> tam giác ABC vuông cân tại A

Xét tam giác BAH vuông tại H và tam giác AKC vuông tại K, có:

AB = AC (gt)

góc BAH = góc ACK (cùng phụ góc KAC)

=> tam giác BAH = tam giác AKC (CH_GN)

=> BH = AK (2 cạnh tương ứng) (đpcm)

b) xét tam giác ABC vuông cân tại A, có:

M là trung điểm BC

=> AM là trung tuyến tam giác ABC

=> AM = BM = MC (tính chất trung tuyến trong tam giác vuông)

=> AM cũng là đường cao (trong tam giác cân đường cao là trung tuyến)

=> góc AMC = 90 độ

*Ta có:

BH vuông góc với AK

CK vuông góc với AK

=> BH // CK

=> góc BCK = góc HBC (so le trong)

Ta lại có;

góc ECK + góc CEK = 90 độ

góc MAE + góc AEM = 90 độ

mà góc CEK = góc AEM (đối đỉnh)

=> góc ECK = góc MAE

mà góc KCE = góc EBH (so le trong)

=> góc MAE = góc EBH

xét tam giác MBH và tam giác MAK, có:

BM = Am (cmt)

góc HBE = góc ECK (cmt)

BH = AK (chứng minh ở câu a)

=> tam giác MBH = tam giác MAK (đpcm)

3) Tam giác MBH = tam giác MAk (cmt)

=> góc MKA = góc BHM (2 góc tương ứng)

xét tam giác AHM và tam giác CKM, có

góc KCM + góc CKM + góc CMK = góc HAM + góc AHM + góc AMH = 180 độ

=> góc KCM + 90 độ + góc AKM + góc CMK = góc HAM + 90 độ + góc BHM + góc AMH

mà góc KCM = góc HAM (cmt)

góc AKM = góc BHM (cmt)

=> góc CMK = góc AMH

mà góc AMH + góc HMC = 90 độ

=> góc CMK + góc HMC = 90 độ

=> góc HMK = 90 độ

p/s: có gì không rõ thì inb ~

 

4 tháng 4 2020

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
^H = ^C (= 90°)
AB = AC (T.g ABC vuông cân)
^ABH = ^CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>^HBM = ^MCK (SLT)(1)
Mặt khác ^MAE + ^AEM = 90°(2)
Và ^MCK + ^CEK = 90°(3)
Nhưng ^AEM = ^CEK (đ đ)(4)
Từ 2,3,4 => ^MAE = ^ECK (5)
Từ 1,5 => ^HBM = ^MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét ▲MBH và ▲MAK có:
MB = AM (cmt); ^HBM = ^MAK(cmt); BH = AK (cma)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên : ▲AMH = ▲ CMK (c.c.c)
=> ^AMH = ^CMK; mà ^AMH + ^HMC = 90 độ
=> ^CMK + ^HMC = 90° hay ^HMK = 90°
Tam giác HMK có MK = MH và ^HMK = 90° nên vuông cân tại M (đpcm).

Chúc bạn học tốt!

4 tháng 4 2020

Bạn tham khảo tại link này nhé

https://h.vn/hoi-dap/question/192990.html

Câu hỏi của Lê Thị Thùy Dung - Toán lớp 7 | Học trực tuyến

11 tháng 3 2021

a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và  góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)

góc HBM = góc MAK(cmt) 

BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác  CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).

23 tháng 2 2018

bài này cũng khó phết đấy

19 tháng 6 2019

bài này mk nghĩ mấy tiếng còn không ra phải lên mạng mà xem

21 tháng 2 2020

A B C E K H M

a) ,Xét △ABH và  △CAK có:

            AB = AC (gt)

            \(\widehat{ABH}=\widehat{KAC}\)( cùng phụ với \(\widehat{BAK}\))

\(\Rightarrow\)△BAH = △ACK(ch-gn)

\(\Rightarrow\)BH= AK (cặp cạnh tương ứng)

b, Xét △ABC vuông cân tại A có AM là đường trung tuyến

\(\Rightarrow\)AM = MB = MC 

Xét △MBH và △MAK có :

MB = AM (cmt)

BH = AK (△BAH = △ACK)

\(\widehat{HBM}=\widehat{KAM}\)(cùng phụ với \(\widehat{AEM}\))

\(\Rightarrow\)△MBH = △MAK (c.g.c)

c, Ta có : △MBH = △MAK

\(\Rightarrow\)MH = MK (Cặp cạnh tương ứng)

\(\Rightarrow\) △MHK cân ở M    (1)

Có : △MBH = △MAK

\(\Rightarrow\widehat{BHM}=\widehat{AKM}\) (Cặp góc tương ứng)

Lại có : \(\widehat{MHK}+\widehat{BHM}=90^o\)

\(\Rightarrow\widehat{MHK}+\widehat{AKM}=90^o\) 

\(\Rightarrow\widehat{HMK}=180^o-\left(\widehat{MHK}+\widehat{AKM}\right)\)

\(\Rightarrow\widehat{HMK}=180^o-90^o=90^o\)(2)

Từ (1) và (2) suy ra △MHK vuông cân tại M