K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

A B C D E F M N

20 tháng 2 2020

Kẻ BM,NC//EF ( M,N thuộc AD)

Ta có \(\frac{AB}{AE}=\frac{AM}{AG},\frac{AC}{AF}=\frac{AN}{AG}\Rightarrow\frac{AB}{AE}+\frac{AC}{AF}=\frac{AM+AN}{AG}\left(1\right)\)

Ta có AM=AD-MD,AN=AD+ND. \(\Delta BMD=\Delta CDN\Rightarrow MD=ND\Rightarrow AM+AN=2AD\)

Theo tính chất trọng tâm thì AG=2/3AD

Từ (1) suy ra VT=\(\frac{2AD}{\frac{2}{3}AD}=3\)

24 tháng 2 2020

b/EF//BM//CN theo Thales ta lại có

\(\frac{BE}{AE}=\frac{MG}{AG},\frac{CF}{AF}=\frac{NG}{AG}\).Vậy \(\frac{BE}{AE}+\frac{CF}{AF}=\frac{MG+NG}{AG}=\frac{GD+MD+GD-ND}{AG}\left(MD=ND\right)=\frac{2GD}{AG}=\frac{2.1}{2}=1\)

24 tháng 2 2020

a/Từ B,C vẽ các đ/thẳng//EF cắt AD tại M,N

Xét tgiac BMD và CND có

BD=DC, NC//BM//EF

Suy ra tgiac BMD=CND(g-c-g)

Suy ra DM=DN

Vì BM//CN//EF theo Thales ta có

\(\frac{AB}{AE}=\frac{AM}{AG},\frac{AC}{AF}=\frac{AN}{AG}\)

Vậy \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{AM+AN}{AG}=\frac{AD+DM+AD-DN}{AG}\left(DM=DN\right)=\frac{2AD}{AG}=\frac{2.3}{2}=3\)

8 tháng 2 2018

Gia sử AB < AC

Vẽ BM , CN // DE , vẽ trung tuyến AF => A;F;G thẳng hàng ; AF = 3/2 AG

Tam giác BMF = tam giác CNF ( g.c.g )

=> MF = NF

Có : BM , CN // DE

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD + AC/AE = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3

P/S : tham khảo

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh: a)\(\frac{BD}{BC}=\frac{1}{3}\) b)\(BD=DE=EC\) Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O. Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\) Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA',...
Đọc tiếp

Bài 1: Cho G là trọng tâm △ABC. Qua G vẽ đường thẳng song song AB và AC cắt BC lần lượt tại D, E. Chứng minh:

a)\(\frac{BD}{BC}=\frac{1}{3}\)

b)\(BD=DE=EC\)

Bài 2: Đường thẳng d cắt các cạnh AB, AD và các đường chéo AC của hình bình hành ABCD lần lượt tại E, F, O.

Chứng minh: \(\frac{AB}{AE}+\frac{AD}{AF}=\frac{AC}{AO}\)

Bài 3: Cho A', B', C' lần lượt nằm trên cạnh BC, AC, AB của △ABC. Biết rằng AA', BB', CC' đồng quy tại M.

Chứng minh:\(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)

Bài 4: Cho △ABC và trung tuyến AM. Điểm O bất kỳ thuộc AM. F là giao điểm của BO và AC, E là giao điểm của OC và AB. Từ M kẻ đường thẳng song song OC cắt AB tại H và đường thẳng song song OB cắt AC tại K.Chứng minh:

a)EF//HK

b)EF//BC

Bài 5: Cho △ABC, kẻ đường thẳng song song BC cắt AB ở D và cắt AC ở E. Qua C kẻ Cx//AB và cắt DE ở G. Gọi H là giao điểm của AC và BG. Kẻ HI//AB (I thuộc BC).Chứng minh:

a)\(DA.EG=DB.DE\)

b)\(HC^2=HE.HA\)

c)\(\frac{1}{HI}=\frac{1}{AB}+\frac{1}{CG}\)

0
9 tháng 2 2018

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

21 tháng 12 2024

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha

9 tháng 2 2018

Gia sử AB < AC

Kẻ BM,CN // DE , trung tuyến AF

Tam giác BMF = tam giác CNF ( g.c.g)

=> MF = NF

=> AB/AD = AM/AG ; AC/AE = AN/AG

=> AB/AD = AM+AN/AG = AF-MF+AF+NF/AG = 2AF/AG = 3 ( VÌ AF = 3/2.AG )

=> ĐPCM

Tk mk nha