\(ab+bc+ca\le3abc\)

Cm \(\frac{a^2}{a+1}+\frac{b^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Trả lời hộ mình đi

10 tháng 11 2018

Cosi ngược dấu

1 tháng 5 2020

Giả sử \(a\ge b\ge c\)

Ta có:\(\frac{a+b}{ab+c^2}+\frac{b+c}{bc+a^2}+\frac{c+a}{ca+b^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{ac+bc-ab-c^2}{c\left(ab+c^2\right)}+\frac{ab+ac-bc-a^2}{\left(bc+a^2\right)a}+\frac{cb+ab-ca-b^2}{b\left(ca+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}+\frac{\left(c-b\right)\left(b-a\right)}{b\left(ca+b^2\right)}\le0\)

Ta có:\(\left(c-b\right)\left(b-a\right)\ge0;\left(b-a\right)\left(a-c\right)\le0;\left(a-c\right)\left(c-b\right)\le0\)

\(\Rightarrow\frac{\left(c-b\right)\left(c-a\right)}{b\left(ca+b^2\right)}\le\frac{\left(c-b\right)\left(c-a\right)}{c\left(ab+c^2\right)}\)

\(\Rightarrow LHS\le\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(c-b\right)\left(b-a\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}\)

\(=\frac{-\left(c-b\right)^2}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)c}\le0\)

\(\Rightarrowđpcm\)

22 tháng 8 2020

Từ giả thiết \(ab+bc+ca=2abc\)suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì \(\hept{\begin{cases}x+y+z=2\\x,y,z>0\end{cases}}\)và  bất đẳng thức cần chứng minh trở thành \(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)hay \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1}{2}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta được \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y+z\right)^2+y\left(z+x\right)^2+z\left(x+y\right)^2}\)\(=\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\)

Ta cần chứng minh\(\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\ge\frac{1}{2}\)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\ge x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz\)

Thật vậy, theo một đánh giá quen thuộc ta có \(2\left(x^2+y^2+z^2\right)^2=2\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)\)\(\ge\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\)

Mà ta lại có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\)

Suy ra ta có \(\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\ge\frac{4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)}{3}\)

Ta cần chỉ ra được \(4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)\)\(\ge3\left(x^2y+y^2x+x^2z+z^2x+y^2z+yz^2+6xyz\right)\)

Hay\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)

Áp dụng bất đẳng thức Cauchy ta được \(4\left(x^3+y^3+z^3\right)\ge12xyz\)\(x^2y+y^2z+z^2x\ge3xyz\)\(xy^2+yz^2+zx^2\ge3xyz\)

Cộng theo vế các bất đẳng thức trên ta được\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)

Vậy bất đẳng thức được chứng minh

 Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)

13 tháng 12 2017

Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có: 

\(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\)

\(\ge\left(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\right)^2\)                                \(\left(1\right)\)

Lại có: \(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)                             ( Do abc=1 )

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=1\)                                                                                              \(\left(2\right)\)

Từ (1) và (2) suy ra \(\left(a+b+c\right)\left[\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\right]\ge1\)

Mà \(a;b;c>0\Rightarrow a+b+c>0\)

\(\Rightarrow\frac{a}{\left(ac+a+1\right)^2}+\frac{b}{\left(bc+b+1\right)^2}+\frac{c}{\left(ca+c+1\right)^2}\ge\frac{1}{a+b+c}\)                (đpcm)

NV
5 tháng 6 2020

Bạn tham khảo:

Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến

29 tháng 11 2016

1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

=>ĐPcm

3)(a+b+c)2\(\ge\)3(ab+bc+ca)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca

=>a2+b2+c2-ab-bc-ca\(\ge\)0

=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0

=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0

=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0

4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

NV
3 tháng 6 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)