Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
1. Bài này vế trái mình đã giải 1 lần rồi bạn.
Bạn dùng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) để có kết quả (a-b)(b-c)(c-a) = 70
70 = 2.5.7 do đó suy ra a-b=2, b-c=5, c-a=7. Suy ra A = 14.
Vì A là tổng 3 giá trị tuyệt đối nên nếu có hoán vị a-b, b-c, c-a thì kết quả vẫn ko đổi
Bài 2 câu c mình cũng có giải rồi ko nhớ bạn của bạn nào. Bạn xem lại nhé
Còn câu b) : Gọi K là giao điểm của EM và BC thị EK vuông góc với BC vì M là trực tâm tam giác EBC. Sau đó bạn cm BM.BD = BK.BC ; CM.CA = CK.CB. Bạn cộng từng vế là ra BM.BD + CM.CA = BC2 ko đổi
Cho P=(a+b)(b+c)(a+c)+abc
Nếu a,b,c thuộc Z và a+b+c chia hết cho 6
Chứng minh P-3abc chia hết cho 6
P - 3abc = (a+b)(b+c)(a+c)+abc - 3abc
= (a+b+c-c)(b+c)(a+c) - 2abc
= (a+b+c)(b+c)(a+c) - c(b+c)(a+c) - 2abc
= (a+b+c)(b+c)(c+a) - c(ab + bc +ac +c2) - 2abc
= (a+b+c)(b+c)(a+c) - c( ab +bc + ac +c2+ 2ab)
= (a+b+c)(b+c)(c+a) - c[(bc+c2+ac) + 3ab]
= (a+b+c)(b+c)(c+a) - c[c(b+c+a) + 3ab]
= (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc
Ta có: a + b + c chia hết cho 6
⇒mà 6 ⋮ 2
⇒ a+b+c chia hết cho 2
⇒ a+b+c là số chẵn
⇒ trong 3 số a, b, c phải có ít nhất một số chẳn
⇒ abc ⋮ 2
⇒ 3abc ⋮ 6
mà a+b+c chia hết cho 6
⇒ (a+b+c)(b+c)(c+a) chia hết cho 6
c²(a+b+c) chia hết cho 6
⇒ (a+b+c)(b+c)(c+a) - c²(a+b+c) - 3abc chia hết cho 6
Vậy P - 3abc chia hết cho 6.