Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+b=c+d => a=c+d-b
thay vào ab+1=cd
=> (c+d-b)*b+1=cd
<=> cb+db-cd+1-b^2=0
<=> b(c-b)-d(c-b)+1=0
<=> (b-d)(c-b)=-1
a,b,c,d,nguyên nên (b-d) và (c-b) nguyên
mà (b-d)(c-b)=-1 nên có 2 TH:
TH1: b-d=-1 và c-b=1
<=> d=b+1 và c=b+1
=> c=d
TH2: b-d=1 và c-b=-1
<=> d=b-1 và c=b-1
=> c=d
Vậy từ 2 TH ta có c=d.
Đặt (a;c)=q thì a=qa1;c=qc1 (Vs (a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1
Dẫn đến d⋮a1 đặt d=a1d1 thay vào đc:
b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)
là hợp số (QED)
\(a+b=c+d\Rightarrow a=c+d-b\)
\(\text{Ta có:}ab+1=cd\)
\(\Leftrightarrow\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2-cd=-1\)
\(\Leftrightarrow c\left(b-d\right)-b\left(b-d\right)=-1\)
\(\Leftrightarrow\left(b-d\right)\left(c-b\right)=-1\)
\(\text{Vì }b,c,d\in Z\)
\(TH1:\left\{{}\begin{matrix}b-d=1\\c-b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b-1\\c=b-1\end{matrix}\right.\Rightarrow c=d\)
\(TH2:\left\{{}\begin{matrix}b-d=-1\\c-b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b+1\\c=b+1\end{matrix}\right.\Rightarrow d=c\)
\(\text{Vậy }d=c\)
a+b=c+d⇒a=c+d−b
Ta có:ab+1=cd
⇔(c+d−b)b+1=cd
⇔bc+bd−b2−cd=−1
⇔c(b−d)−b(b−d)=−1
⇔(b−d)(c−b)=−1
Vì b,c,d∈Z
TH1:{b−d=1c−b=−1⇒{d=b−1c=b−1⇒c=d
TH2:{b−d=−1c−b=1⇒{d=b+1c=b+1⇒d=c
a + b = c + d => d = a + b - c
Vì ab là số liền sau của cd nên ab - cd = 1
=> ab - c(a + b - c) = 1
=> ab - ac - bc + c2 = 1
=> a(b - c) - c(b - c) = 1
=> (a - c)(b - c) = 1
=> a - c = b - c (vì cùng bằng 1 hoặc -1)
=> a = b (đpcm)
troi..................lanh..............wa...............bai..........thi kho.........ung..................ho...............minh................nha...................huhu.............lanh wa...................tih.............minh........chet roi
1 bai toan lop 6 de the ,ma dem ra hoi.dang xau ho !nói trước đa số hs trên olm đều hc lớp 5