Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{b+c-a}{a}\)
\(\Leftrightarrow\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
TH1 : \(a+b+c=0\Leftrightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}\Leftrightarrow M=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1}\)
TH2 : \(a+b+c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}\Rightarrow}M=\frac{2c.2b.2a}{abc}=8}\)
Th1: a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{a-b+c}{b}=2+\frac{\left(-a\right)+b+c}{a}\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{b}=\frac{a+b+c}{a}\)
\(\Rightarrow a=b=c\)
thay a=b=c vào b/t A. ta có:
\(A=\frac{aaa}{\left(a+a\right).\left(a+a\right).\left(a+a\right)}=\frac{aaa}{2a.2a.2a}=\frac{aaa}{8aaa}=\frac{1}{8}\)
th2: a+b+c = 0
=> a+b=-c
b+c=-a
c+a=-b
thay a+b=-c, b+c=-a, c+a=-b vào b/t A ta có:
\(A=\frac{abc}{\left(-c\right).\left(-a\right).\left(-b\right)}=-1\)
vì b2 = a.c nên \(\frac{a}{b}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{2015.b}{2015.c}=\frac{a+2015.b}{b+2015.c}\)
\(\Rightarrow\left(\frac{a+2015.b}{b+2015.c}\right)^2=\left(\frac{a}{b}\right)^2=\frac{a^2}{b^2}=\frac{a^2}{a.c}=\frac{a}{c}\)
Xét a+b+c=0 thì A=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
Xét a+b+c\(\ne0\).Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\Rightarrow a=b=c\)
\(\Rightarrow A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2a.2a.2a}{a.a.a}=8\)
Vậy.................................
Áp dụng t/c dtsbn:
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b+c}{a+b+c}=1\\ \Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+a\right)\left(a+a\right)\left(a+a\right)}{a\cdot a\cdot a}=\dfrac{8a^3}{a^3}=8\)
\(\dfrac{a+b-c}{c}=\dfrac{a+c-b}{b}=\dfrac{b+c-a}{a}=\dfrac{a+b-c+a+c-b+b+c-a}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b-c=c\\a+c-b=b\\b+c-a=a\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=2c\\a+c=2b\\b+c=2a\end{matrix}\right.\)
\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{2a.2b.2c}{abc}=8\)
Ta có:\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{1}{2}\)
Xét a+b+c=0
\(\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=-1+-1+-1=-3\)
Xét \(a+b+c\ne0\)
\(\Rightarrow2a=b+c,2b=c+a,2c=a+b\)
\(\Rightarrow\frac{b+c}{a}=2,\frac{a+c}{b}=2,\frac{a+b}{c}=2\Rightarrow\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)
a/b+c =b/c+a =c/a+b
<=> a/b+c +1 = b/c+a +1 = c/a+b +1
<=> a+b+c / b+c = a+b+c / c+a =a+b+c / a+b
<=>a+b+c=0 hoặc b+c= c+a=a+b
nếu b+c=c+a=a+b => a=b=c (vô lý trái với đề bài a, b, c khác nhau)
=> a+b+c=0 => a= - b - c => b+c/a = - 1
tương tự a+b/c = -1 ; a+c/b = - 1
=> P = - 3