Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
ta có:a2+b2+c2-ab-bc-ca=1/2.2(a2+b2+c2-ab-bc-ca)
=1/2(2a2+2b2+2c2-2ab-2bc-2ca) = 1/2[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]
=1/2[(a-b)2+(b-c)2+(a-c)2] >hoặc = 0(đúng với mọi abc)
=>a2+b2+c2-ab-bc-ac > hoặc =0
<=>a2+b2+c2>hoặc =ab+bc+ac(dấu = xảy ra khi a=b=c)
thế này chắc dễ hơn chứ
(gọi đầu bài là BPT 1)
2a2 + 2b2 + 2c2 > 2ab+ 2bc +2ca (vì đă nhân 2>0 vào cả 2 vế của BPT)
(a -b)2 + (b-c)2 + (c-a)2>0 (chuyển vế, đổi dấu,dùng hằng đẳng thức)
do đó, (a -b)2 + (b-c)2 + (c-a)2>0 với mọi a, b,c(đây là BPT 2)
vậy BPT 2 đúng với mọi a, b,c =>BPT **** đpcm
Cho tam giác ABC và điểm M trong tam giác. Gọi khoảng cách từ M đến các cạnh BC, CA, AB lần lượt là da, db, dc và khoảng cách từ M đến các đỉnh A,B,C là x,y,z và AB=c, BC=a, CA=b. CMR:
x+y+z\(\ge\)2(da+db+dc) ( BĐT Erdos )
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
Ta có :
\(3\left(a^2+b^2+c^2+d^2\right)-2\left(ab+ac+ad+bc+bd+cd\right)\)
\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{2}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Rightarrow\left(a+b+c+d\right)^2=a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\)
\(\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\left(đpcm\right)\)
\(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)\)\(+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\) ( đúng )
=> Đpcm
\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)
\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)