K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:
BĐT cần chứng minh tương đương với:

$18a^2+3b^2+7c^2+18-16ac+6bc-12a\geq 0$

$\Leftrightarrow (16a^2-16ac+4c^2)+3(b^2+2bc+c^2)+2(a^2-6a+9)\geq 0$

$\Leftrightarrow (4a-2c)^2+3(b+c)^2+2(a-3)^2\geq 0$

(luôn đúng với mọi $a,b,c$ thực)

Do đó ta có đpcm.

5 tháng 12 2016

Mình sẽ chứng minh bằng biến đổi tương đương nhé :)

\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-ab+b^2\right)+\left(\frac{a^2}{4}-ac+c^2\right)+\left(\frac{a^2}{4}-ad+d^2\right)+\left(\frac{a^2}{4}-ae+e^2\right)\ge0\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)(luôn đúng)

Vì BĐT cuối luôn đúng nên BĐT ban đầu được chứng minh.

20 tháng 10 2021

Ta có: \(2\left(a^4+b^4\right)-\left(ab^3+a^3b+2a^2b^2\right)\)

\(=\left(a^2-b^2\right)^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Ta có đpcm

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

4 tháng 4 2015

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

4 tháng 4 2015

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

15 tháng 2 2017

c/ Ta có:\(6a-5b=1\)

\(\Rightarrow5b=6a-1\)

Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)

\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)

\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)

15 tháng 2 2017

còn câu a,b nữa a ơi :((

4 tháng 9 2017

(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc

* a2+b2+(c/3)2 \(\ge\)0

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)2ab+2/3ac+2/3bc

mà 2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\(\ge\)ab+bc+ca

=> (a+b+c/3)2\(\ge\)ab+bc+ca

18 tháng 9 2019

trả lời:

(a+b+c/3)2= a2+b2+(c/3)2+2ab+2/3ac+2/3bc

* a2+b2+(c/3)2 \ge≥0

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥2ab+2/3ac+2/3bc

mà 2ab+2/3ac+2/3bc\ge≥ab+bc+ca

=> a2+b2+(c/3)2+2ab+2/3ac+2/3bc\ge≥ab+bc+ca

=> (a+b+c/3)2\ge≥ab+bc+ca