\(\frac{a}{b}\)bé hơn 1 thì\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2019

\(\frac{a}{b}< \frac{a+n}{b+n}\) \(\left(1\right)\)

\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)

\(\Leftrightarrow ab+an< ab+bn\)

\(\Leftrightarrow an< bn\)

\(Do.a< b\)nên an<bn\(\Rightarrow\)(1)

\(\frac{a}{b}>\frac{a+n}{b+n}\)\(\left(2\right)\)

\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)

\(\Leftrightarrow ab+an>ab+bn\)

\(\Leftrightarrow an>bn\)

Do a>b nên \(\Rightarrow\)(2)

21 tháng 7 2016

a) Vì a > b

=> a.n > b.n

=> a.n + a.b > b.n + a.b

=> a.(b + n) > b.(a + n)

=> a/b > a+n/b+n ( đpcm)

Câu b và c lm tương tự

15 tháng 6 2017

1

a,Ta có: \(\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(c+b\right)}{c\left(c+b\right)}=\frac{b}{c}\)

b, \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\frac{2a}{2c}=\frac{a}{c}\)(1)

Mặt khác: \(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\frac{2b}{2a}=\frac{b}{a}\)(2)

Từ (1);(2)\(\Rightarrow\frac{a}{c}=\frac{b}{a}\Leftrightarrow a^2=bc\)

c, Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b}=\frac{c}{d}=\frac{m}{n}=\frac{a+c+m}{b+d+n}\)

15 tháng 6 2017

Ta có : \(a^2=bc\)

\(\Rightarrow\frac{a^2+b^2}{a^2+c^2}=\frac{bc+b^2}{bc+c^2}=\frac{b\left(b+c\right)}{c\left(b+c\right)}=\frac{b}{c}\)(đpcm)

25 tháng 3 2019

                       Giải

\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)       

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{b}{c}\right)+\left(\frac{b}{a}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{a}{b}\right)\)

\(\Leftrightarrow S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)

Mà \(\left(\frac{a}{c}+\frac{c}{a}\right)\ge2\)\(\left(\frac{b}{c}+\frac{c}{b}\right)\ge2\)\(\left(\frac{b}{a}+\frac{a}{b}\right)\ge2\)

\(\Leftrightarrow S\ge2+2+2\)

\(\Leftrightarrow S\ge6\left(đpcm\right)\)

25 tháng 3 2019

Bui Huyen            

Mình quen đặt S rồi nên sửa lại N nhé.

25 tháng 2 2018

Do \(\frac{a}{b}< 1\Rightarrow a< b\Rightarrow a.m< b.m\)

Ta có : \(a.\left(b+m\right)=a.b+a.m\)

           \(b.\left(a+m\right)=a.b+b.m\)

mà \(a.m< b.m\)\(\Rightarrow\)\(a.b+a.m< a.b+b.m\)

\(\Rightarrow\)\(a.\left(b+m\right)< b.\left(a+m\right)\)

\(\Rightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)

3 tháng 6 2020

tích chéo có phải nhanh hơn ko bạn [ mạnh vũ cường ]

23 tháng 6 2020

Bài làm:

Ta có: Áp dụng bất đẳng thức Cauchy dạng cộng mẫu (bạn có thể tham khảo các tài liệu để biết cách chứng minh) 

\(\Rightarrow\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{3^2}{3+a+b+c}\ge\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(\frac{1}{1+a}=\frac{1}{1+b}=\frac{1}{1+c}\Rightarrow a=b=c=1\)

Vậy Min biểu thức bằng \(\frac{3}{2}\)khi \(a=b=c=1\)

Chúc bạn học tốt!

8 tháng 8 2016

a) Nhân cả hai vế với b, ta có đpcm

b) Đề sai

c) Nhân cả hai vế với b, ta có đpcm

d) Bạn trên đã làm r , mình  k trình bày lại nữa

8 tháng 8 2016

d,

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\) \(a=k\times b\) ; \(c=k\times d\)

Ta có :

\(\frac{a^2}{b^2}=\frac{\left(k\times b\right)^2}{b^2}=\frac{k^2\times b^2}{b^2}=k^2\)                           (1)

\(\frac{c^2}{d^2}=\frac{\left(k\times d\right)^2}{d^2}=\frac{k^2\times d^2}{d^2}=k^2\)                            (2)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(k\times b\right)^2+\left(k\times d\right)^2}{b^2+d^2}=\frac{k^2\times b^2+k^2\times d^2}{b^2+d^2}=\frac{k^2\times\left(b^2+d^2\right)}{b^2+d^2}=k^2\)              (3)

Từ (1) ; (2) và (3) => \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

Y
17 tháng 5 2019

a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

b) b = a - c => b + c = a

\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)

17 tháng 5 2019

Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)

12 tháng 2 2017

1 ) Vì b + c + a > b => \(\frac{a}{b}>\frac{a}{b+c+a}\)

2 ) Ta có :

\(\frac{a}{b}>\frac{a}{b+c+a}\) 

\(\frac{b}{c}>\frac{b}{b+c+a}\)

\(\frac{c}{a}>\frac{c}{b+c+a}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{b+c+a}=\frac{a+b+c}{b+c+a}=1\) (ddpcm)

18 tháng 2 2017

Các bạn giải bằng 3 cách so sánh nhé :

+) So sánh các phân số bằng cách quy đồng.

+) So sánh với trung gian.

+) So sánh phần bù hoặc phần thừa.