Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)\(=\frac{a+b+c+d}{a+b+c+a+b+d+a+c+d+b+c+d}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
vậy M không phải là số tự nhiên
a) \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(\Rightarrow A< \frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
b) b = a - c => b + c = a
\(\left\{{}\begin{matrix}\frac{a}{b}\cdot\frac{a}{c}=\frac{a^2}{bc}\\\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a^2}{bc}\end{matrix}\right.\)
\(\Rightarrow\frac{a}{b}\cdot\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Bước 2 bạn sai rồi. Vd: \(\frac{1}{3x3}\) đâu bằng hay nhỏ hơn \(\frac{1}{2x3}\)
Ta có :
A > a/a+b+c + b/a+b+c + c/ a+b+c = 1
=> A>1 1/
B = b/a+b + c/b+c + a/c+a < b/a+b+c + c/a+b+c + a/a+b+c=1
=>B>1
Mà A+B = 3 và B>1 nên :
=> A < 2 2/
Từ 1/ và 2/ ,
=> 1<A<2 (đpcm)
Đặt P=\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
CM P>1
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
CM: P<2
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=2\)
Vì 1<P<2 => P ko fai STN