Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a<b
=>ac<bc (vi c>0)
=>ac+ab<bc+ab
=>a(b+c)<b(a+c)
=>a/b<a+c/b+c
b) lam nguoc lai cau a
Gọi UCLN(a,c) = d => a = a1 d, c = c1 d.
=> ab = c
<=> a1 db = (c1 d)2
<=> a1 b = c12 d (1)
Từ (1) => a1 b chia hết cho c12 mà vì (a1, c1) = 1 nên b chi hết cho c12 (2)
Từ (1) ta lại => c12 d chia hết cho b mà vì (a,b) = 1 nên (b,d) = 1
=> c12 chia hết cho b (3)
Từ (2) và (3) => b = c12
Từ đề bài ta có
ab = c2
<=> ac12 = (c1 d)2
<=> a = d2
Vậy a, b là hai số chính phương
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
Vì \(a>b\) nên \(a=b+m\) \(\left(m\inℕ^∗\right)\)
Ta có : \(\frac{a}{b}=\frac{b+m}{b}=1+\frac{m}{b}\)
\(\frac{a+c}{b+c}=\frac{b+m+c}{b+c}=1+\frac{m}{b+c}\)
Mà \(\frac{m}{b}>\frac{m}{b+c}\) nên \(1+\frac{m}{b}>1+\frac{m}{b+c}\)
hay \(\frac{a}{b}>\frac{a+c}{b+c}\) (đpcm)
Theo cj nghĩ :
\(a>b\Rightarrow a-b>0\left(a;b\inℕ^∗\right)\)
Mà : \(\frac{a}{b}-\frac{a+c}{b+c}=\frac{a\left(b+c\right)}{b\left(b+c\right)}-\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{a\left(b+c\right)-b\left(a+c\right)}{b\left(b+c\right)}=\frac{c\left(a-b\right)}{b\left(b+c\right)}>0\)
Do đó : \(\frac{a}{b}>\frac{a+c}{b+c}\left(đpcm\right)\)