Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng AM-GM:
\(\Sigma\frac{\sqrt{ab}}{a+b+2c}=\Sigma\frac{\sqrt{ab}}{a+c+b+c}\le\frac{1}{2}\Sigma\frac{\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{4}\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
ÁP DỤNG BĐT COSI TA CÓ :\(\sqrt{\frac{a}{b+c+2a}}\le\frac{a}{b+c+2a}+\frac{1}{4}\)
\(\sqrt[]{\frac{b}{a+c+2b}}\le\frac{b}{a+c+2b}+\frac{1}{4}\)
\(\sqrt[]{\frac{c}{a+b+2c}}\le\frac{c}{a+b+2c}+\frac{1}{4}\)
ĐẶT A=\(\sqrt[]{\frac{a}{b+c+2a}}+\sqrt[]{\frac{b}{a+c+2b}}+\sqrt[]{\frac{c}{a+b+2c}}\)
\(\le\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}+\frac{3}{4}\)
ÁP DỤNG BĐT :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
\(\Rightarrow\frac{b}{a+c+2b}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(\Rightarrow\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{c+b}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)+\frac{3}{4}\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)+\frac{3}{4}\)
\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)+\frac{3}{4}\)
\(\Rightarrow A\le\frac{3}{2}\)
DẤU = XẢY RA\(\Leftrightarrow a=b=c\)
Một lời giải khác:
\(\left(\Sigma\sqrt{\frac{a}{b+c+2a}}\right)^2=\left(\Sigma\sqrt{\frac{a\left(a+2c+b\right)}{\left(a+2c+b\right)\left(b+c+2a\right)}}\right)^2\)
\(\le\left[\Sigma a\left(a+2c+b\right)\right]\left[\Sigma\frac{1}{\left(a+2c+b\right)\left(b+c+2a\right)}\right]=\Sigma\frac{a^2+3ab}{\left(a+2c+b\right)\left(b+c+2a\right)}\)
\(=\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\)
Cần chứng minh \(\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\le\frac{9}{4}\)
Chịu khó quy đồng :V
\(VT=\sum\frac{ab}{\sqrt{\left(a+b+c\right)c+ab}}=\sum\frac{ab}{\sqrt{\left(b+c\right)\left(c+a\right)}}\le\sum\frac{ab}{2}\left(\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(=\frac{1}{2}\left[\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right]=\frac{1}{2}\left(a+b+c\right)=1\)
Ta có \(\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{\sqrt{ab^2c^3}}{2\sqrt{bc}}=\frac{1}{2}.\sqrt{ac.bc}\)
Mà \(\frac{1}{2}\sqrt{ac.cb}\le\frac{1}{4}\left(ac+cb\right)\)\(\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}\le\frac{1}{4}\left(ac+bc\right)\)
Tương tự cộng lại, ta có
\(\frac{\sqrt{ab^2c^3}}{b+c}+\frac{\sqrt{bc^2a^3}}{c+a}+\frac{\sqrt{ca^2b^3}}{a+b}\le\frac{1}{2}\left(ab+bc+ca\right)\)
Mà \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\Rightarrow\frac{\sqrt{ab^2c^3}}{b+c}+...\le\frac{3}{2}\)
dấu = xảy ra <=> a=b=c=1
^.^
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)
\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)
\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)
\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)
Ta được BĐT:
\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)
\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)
=> đpcm
P/S: Làm tắt vs đoạn này k^o chắc mấy :V
Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)
Không use condition của đề bài :))
Ta co:
\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)
\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)
equelity iff \(a=b=c=3\)
ý a, áp dụng BĐT cô si có
a + b >= căn ab dấu = xay ra a=b
b + c >= căn bc dau = xay ra khi b=c
c+a >= căn ac dau = xay ra khi a=c
công tung ve vao. rut gon ta dc điều phải chung minh