Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
Vì a;b;c là 3 cạnh của tam giác nên mỗi nhân tử của VP đều dương,áp dụng bđt Cauchy:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\)
\(\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\le\frac{b+c-a+a+c-b}{2}=c\)
\(\sqrt{\left(a+c-b\right)\left(a+b-c\right)}\le\frac{a+c-b+a+b-c}{2}=a\)
Nhân theo vế => ddpcm "=" khi a=b=c
Áp dụng bđt bunhiacopski cho 3 số ta có
\(\left(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\right)^2\le\left(a^2+b^2+c^2\right)\left(1-a^2+1-b^2+1-c^2\right)\Leftrightarrow\frac{9}{4}\le\left(a^2+b^2+c^2\right)\left[3-\left(a^2+b^2+c^2\right)\right]\)(1)
Đặt \(a^2+b^2+c^2=k\)
Vậy (1)\(\Leftrightarrow\frac{9}{4}\le k\left(3-k\right)\Leftrightarrow\frac{9}{4}\le3k-k^2\Leftrightarrow k^2-3k+\frac{9}{4}\le0\Leftrightarrow\left(k-\frac{3}{2}\right)^2\le0\)
Vì \(\left(k-\frac{3}{2}\right)^2\ge0\)
Suy ra \(\left(k-\frac{3}{2}\right)^2=0\Leftrightarrow k-\frac{3}{2}=0\Leftrightarrow k=\frac{3}{2}\)
Vậy \(a^2+b^2+c^2=\frac{3}{2}\)