Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt a/2008=b/2009=c/2010=k=>a=2008k;b=2009k;c=2010k
thay vào biểu thức:
\(\left(a-c\right)^3:\left[\left(a-b\right)^2.\left(b-c\right)\right]=\left(2008k-2010k\right)^3:\left[\left(2008k-2009k\right)^2.\left(2009k-2010k\right)\right]\)
\(=\left(-2k\right)^3:\left[\left(-1k\right)^2.\left(-1k\right)^2\right]=\left(-2\right)^3.k^3:\left[\left(-1\right)^2.k^2.\left(-1\right)^2.k^2\right]=8.k^3:1.k^4=8.k^3:k^4=8.k^3:k^3.k=8k\)
Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)
\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)
Khi đó :
\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)
Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
Ta có : \(\frac{a+b}{2008}=\frac{b+c}{2009}=\frac{c+a}{2010}=\frac{a+b-\left(b+c\right)}{2008-2009}=\frac{b+c-\left(c+a\right)}{2009-2010}=\frac{c+a-\left(a+b\right)}{2010-2008}=\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}\)
Đặt \(\frac{a-c}{-1}=\frac{b-a}{-1}=\frac{c-b}{2}=k\Rightarrow a-c=-k;b-a=-k;c-b=2k\)
Ta lại có : \(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)\(\Rightarrow-4k\times\left(-k\right)=\left(2k\right)^2\)\(\Rightarrow4k^2=4k^2\)
Vế trái đúng bằng vế phải \(\Rightarrow\)\(4\left(a-c\right)\left(b-a\right)=\left(c-b\right)^2\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
Đặt \(\frac{a}{2008}=\frac{b}{2009}=\frac{c}{2010}=k\)
suy ra: \(a=2008k;\) \(b=2009k;\)\(c=2010k\)
Khi đó ta có: \(4\left(a-b\right)\left(b-c\right)\)
\(=4\left(2008k-2009k\right)\left(2009k-2010k\right)\)
\(=4k^2\)
\(\left(c-a\right)^2=\left(2010k-2008k\right)^2=4k^2\)
suy ra: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
p/s: tham khảo,