Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có abc=1 nên
1/(1+a+ab)=abc/(abc+a+ab)
=abc/[a(1+b+bc)]
=bc/(1+b+bc)
1/(1+c+ac)=abc/(abc+c.abc+ac)
=abc/[ca(1+b+bc)]=b/(1+b+bc)
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)
=bc/(1+b+bc)+1/(1+b+bc)+b/(1+b+bc)
=(1+b+bc)/(1+b+bc)
=1
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)=1
ràu xong
1.\(VT=\frac{c}{abc+ac+c}+\frac{b}{bc+b+abc}+\frac{abc}{abc+bc+b}=\frac{c}{ac+c+1}+\frac{1}{ac+c+1}+\frac{ac}{ac+c+1}=\frac{ac+c+1}{ac+c+1}=1=VP\)
Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{abc}{ab^2c+abc+bc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{b+bc+1}+\frac{b}{b+bc+1}+\frac{bc}{b+bc+1}=\frac{b+bc+1}{b+bc+1}=1\)
Vậy ta có điều phải chứng minh.
Lưu ý : abc = 1
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
Ta có \(\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{abc+bc+b}\)mình chỉnh sửa đề 1 chút , chắc bạn viết sai
\(=\frac{1}{ab+a+1}+\frac{b}{bc+b+1}+\frac{1}{1+bc+b}\)(vì abc=1)
\(=\frac{1}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{a}{a.\left(1+bc+b\right)}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{a}{a+abc+ab}\)
\(=\frac{1}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{a}{a+1+ab}\)
\(=\frac{1+ab+a}{ab+a+1}\)
\(=1\)