Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý này: Đặt \(a=x^3,b=y^3,c=z^3\) rồi áp dụng bất đẳng thức này \(x^3+y^3\ge xy\left(x+y\right)\) rồi biến đổi 1 chút nx là ra
Chi biet phan 5 thoi @
Vi 3a=5b=12suy ra a=4 ;b=2,4 ta co p=a.b suy ra p=4×2.4=9.6 suy ra p>[=9.6 gtln=9.6
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\)
\(\Leftrightarrow\frac{1}{1+a}=1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(\text{ta áp dụng BĐT cô-si}\right)\)
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\)
Tương tự, ta có:
\(\frac{1}{1+c}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+b\right)}}\)
Nhân theo vế. ta có: \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{\sqrt{a^2b^2c^2}}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}=\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi: \(Q=abc;MAX_Q=\frac{1}{8}\Leftrightarrow a=b=c=\frac{1}{2}\)
P/s: Ko chắc