K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CD
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TC
0
DQ
1
PT
0
A
1
VT
1
A
0
LT
1
KN
21 tháng 3 2019
Giải
Ta có: \(\hept{\begin{cases}a+c=2b\left(3\right)\\c\left(b+d\right)=2bd\end{cases}}\Leftrightarrow\hept{\begin{cases}ad+cd=2bd\left(1\right)\\bc+cd=2bd\left(2\right)\end{cases}}\)
Từ (1) và (2) suy ra \(ad+cd=bc+cd\)
\(\Leftrightarrow ab=bc\)
Mà a, b, c, d là số dương nên a = c (4)
Từ (3) và (4) suy ra 2a = 2b hay a = b (5)
Từ (4( và (5) suy ra a = b = c.
\(\Leftrightarrow2bd=2cd\)
\(\Rightarrow b+d=2d\)
\(\Rightarrow b=2d-d\)
\(\Rightarrow b=d\)
Vậy a = b = c = d thì a + c = 2b và c( b + d) = 2bd.
N
0
Có a+b=3(b+c)=4(c+a)
\(\Rightarrow\frac{a+b}{12}=\frac{3\left(b+c\right)}{12}=\frac{4\left(c+a\right)}{12}\Leftrightarrow\frac{a+b}{12}=\frac{b+c}{4}=\frac{c+a}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau,ta có:
\(\frac{a+b}{12}=\frac{b+c}{4}=\frac{c+a}{3}=\frac{a+b-b-c+c+a}{12-4+3}=\frac{2a}{11}\)
=>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,