K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

giả sử :c^2>a^2>b^2 khi đó ta có :

\(\frac{b^2+c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4^2}+\frac{a^2-b^2}{c^2+5}\le\frac{b^2+c^2}{b^2+3}+\frac{c^2-a^2}{b^2+3}+\frac{a^2-b^2}{b^2+3}=\frac{2c^2}{b^2+3}\le\frac{2}{3}.c^2\)

Như vậy ta có :\(a^2+b^2+c^2\le\frac{2}{3}.c^2\). Điều này xảy ra khi a=b=c

                 chuc bn hk tốt!

9 tháng 3 2018

Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)

Mà theo đề bài:

\(a\le b+1\le c+2\)

\(\Rightarrow1-b-c\le b+1\le c+2\)

\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)

\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)

14 tháng 3 2018

Từ: a+b+c=1⇔a=1−b−c

Mà theo đề bài:

a≤b+1≤c+2

⇒1−b−c≤b+1≤c+2

⇒2(c+2)≥1−b−c+b+1

⇒2c+4≥2−c⇔3c+4≥2⇔3c≥−2⇔c≥−23 

...

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
\(\dfrac{\text{(a + c + m)}}{\left(a+b+c+d+m+n\right)}\) < \(\dfrac{1}{2}\)

24 tháng 2 2022

Giải:

Vì a∈Z+

⇒5b=a3+3a2+5>a+3=5c

⇒5b>5c⇒b>c

⇒5b⋮5c

⇒a3+3a2+5⋮a+3

⇒a2(a+3)+5⋮a+3

Mà a2(a+3)⋮a+3

⇒5⋮a+3

⇒a+3∈Ư(5)

⇒a+3∈{±1;±5}(1)

Do a∈Z+⇒a+3≥4(2)

Từ (1) và (2)

⇒a+3=5

⇒a=5−3

⇒a=2(∗)

Thay (∗) vào biểu thức ta có:

23+3.22+5=5b⇔b=2

2+3=5c⇔c=1

Vậy: 

6 tháng 1 2018

Ta có:\(8^7-2^{18}=\left(2^3\right)^7-2^{18}\)\(=2^{21}-2^{18}=2^{17}\cdot2^4-2^{17}\cdot2=2^{17}\cdot\left(2^4-1\right)=2^{17}\cdot14\)\(⋮14\)

\(\Rightarrow8^7-2^{18}⋮14\)

(ĐPCM)

6 tháng 1 2018

1, Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14⋮14\)

2, Đặt: \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=k\)

\(\Rightarrow a=2k;b=5k;c=7k\)

Nên: \(A=\dfrac{a-b+c}{a+2b-c}=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{3k}{5k}=\dfrac{3}{5}\)

Vậy...