Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi nha bạn!
Đề: Cho \(a,b,c>0\) thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}.\) Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Lời giải:
Với mọi \(a,b,c\in R\) thì ta luôn có:
\(a^2+b^2+c^2\ge2bc+2ca-2ab\) \(\left(\text{*}\right)\)
Ta cần chứng minh \(\left(\text{*}\right)\) là bất đẳng thức đúng!
Thật vậy, từ \(\left(\text{*}\right)\) \(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) \(\left(\text{**}\right)\)
Bất đẳng thức \(\left(\text{**}\right)\) hiển nhiên đúng với mọi \(a,b,c\) , mà các phép biến đổi trên tương đương
Do đó, bất đẳng thức \(\left(\text{*}\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)
Mặt khác, \(a^2+b^2+c^2=\frac{5}{3}\) (theo giả thiết)
Mà \(\frac{5}{3}=1\frac{2}{3}<2\)
\(\Rightarrow\) \(a^2+b^2+c^2<2\) \(\left(\text{***}\right)\)
Từ \(\left(\text{*}\right)\) kết hợp với \(\left(\text{***}\right)\), ta có thể viết 'kép' lại: \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)
Suy ra \(2bc+2ca-2ab<2\)
Khi đó, vì \(abc>0\) (do \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho \(2abc\), ta được:
\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)
\(\Leftrightarrow\) \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Vậy, với \(a,b,c\) là các số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=\frac{5}{3}\) thì ta luôn chứng minh được:
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
\(ab+bc+ca=0\)
=> \(\frac{ab+bc+ca}{abc}=0\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Đặt: \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)
Ta có: \(x+y+z=0\)
=> \(x^3+y^3+z^3=3xyz\) (tự c/m, ko c/m đc ib)
hay \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc.\frac{3}{abc}=3\)
a) Áp dụng Cauchy Schwars ta có:
\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)
Dấu "=" xảy ra khi: x=y=1
\(a+b+c=\frac{3}{2}\Rightarrow\left(a+b+c\right)^2=\frac{9}{4}\)
hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)
Suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
Ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (tự c/m,không làm được ib)
Ta có: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)
\(\ge\frac{9}{4}-2.\frac{\left(a+b+c\right)^2}{3}=\frac{9}{4}-2.\frac{\left(\frac{9}{4}\right)}{3}=\frac{3}{4}^{\left(đpcm\right)}\)
Easy!
Ta có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)
Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)
Cộng 3 bđt vế theo vế ta được:
\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra <=> a=b=c=1/2