Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Đặt
\(\frac{a}{b^2}=x,\frac{b}{c^2}=y,\frac{c}{a^2}=z,xyz=1\)thì ta có
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=x+y+z\)
\(\Leftrightarrow xyz-xy-yz-zx+x+y+z-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow x=1;y=1;z=1\)
\(\Rightarrow\frac{a}{b^2}=1;\frac{b}{c^2}=1;\frac{c}{a^2}=1\)
\(\Leftrightarrow a=b^2;b=c^2;c=a^2\)
2/ Đặt
\(ab=x,bc=y,ca=z\) cần tính
\(P=\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)\left(1+\frac{y}{x}\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)
Xét \(x+y+z=0\)
\(\Rightarrow P=\frac{x+y}{x}.\frac{y+z}{y}.\frac{z+x}{z}=\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-1\)
Xét \(x^2+y^2+z^2-xy-yz-zx=0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y=z\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Đặt \(\frac{a}{b^2}=x;\frac{b}{c^2}=y;\frac{c}{a^2}=z\) thì \(\frac{b^2}{a}=\frac{1}{x};\frac{a^2}{c}=\frac{1}{y};\frac{c^2}{b}=\frac{1}{z}\)
\(\Rightarrow xyz=\frac{a}{b^2}\cdot\frac{b}{c^2}\cdot\frac{c}{a^2}=1\)
Ta có: \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{xy+yz+zx}{xyz}=xy+yz+zx\)
Lại có: \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=xyz-xy-yz-zx+x+y+z-1=1-x-y-z+x+y+z-1=0\)(vì xyz=1, xy+yz+zx=x+y+z)
=>x-1=0 hoặc y-1=0 hoặc z-1=0
=>x=1 hoặc y=1 hoặc z=1
=>a/b2=1 hoặc b/c2=1 hoặc c/a2=1
=>a=b2 hoặc b=c2 hoặc c=a2 (ĐPCM)
Cách khác
Ta có: \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{b^2}{a}+\frac{a^2}{c}+\frac{c^2}{b}\)
<=>\(a^2b^2c^2\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right)=abc\left(\frac{b^2}{a}+\frac{a^2}{c}+\frac{c^2}{b}\right)\) (a2b2c2=abc=1)
<=>\(\frac{a^3b^2c^2}{b^2}+\frac{a^2b^3c^2}{c^2}+\frac{a^2b^2c^3}{a^2}=\frac{ab^3c}{a}+\frac{a^3bc}{c}+\frac{abc^3}{b}\)
<=>\(a^3c^2+b^3a^2+c^3b^2=b^3c+a^3b+c^3a\)
<=>\(a^3c^2+b^3a^2+c^3b^2-b^3c-a^3b-c^3a-a^2b^2c^2+abc=0\) (a2b2c2=abc=1)
<=>\(\left(a^3c^2-a^2b^2c^2\right)+\left(b^3a^2-a^3b\right)+\left(c^3b^2-c^3a\right)+\left(abc-b^3c\right)=0\)
<=>\(-a^2c^2\left(b^2-a\right)+a^2b\left(b^2-a\right)+c^3\left(b^2-a\right)-bc\left(b^2-a\right)=0\)
<=>\(\left(b^2-a\right)\left(-a^2c^2+a^2b+c^3-bc\right)=0\)
<=>\(\left(b^2-a\right)\left[c^2\left(c-a^2\right)-b\left(c-a^2\right)\right]=0\)
<=>\(\left(b^2-a\right)\left(c^2-b\right)\left(c-a^2\right)=0\)
Đến đây dễ rồi
3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
1) \(a+b+c=0\Rightarrow2\left(a+b+c\right)=0\Rightarrow\frac{2\left(a+b+c\right)}{abc}=0\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(\Rightarrow M=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
đặt a2/c=x => c/a2=1/x
b2/a=y=>a/b2=1/y
c2/b=z=>b/c2=1/z
Dễ thấy xyz=1
từ đó ta có \(x+y+z=1/x+1/y+1/z\)
Xét (x-1)(y-1)(z-1) = 0
=>x=1 ; y=1 ;z =1
......