Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a3 + b3 + c3 - 3abc
= (a + b)3 + c3 - 3ab(a + b) - 3abc
= (a + b + c)3 - 3(a + b)c(a + b + c) - 3ab(a + b + c)
= (a + b + c)[(a + b + c)2 - 3(a + b)c - 3ab]
= (a + b + c)(a2 + b2 + c2 + 2ab + 2bc + 2ac - 3ac - 3bc - 3ab)
= (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 3abc - 3abc = 0
=> a + b + c = 0 hay a2 + b2 + c2 - ab - bc - ac = 0
I => 2(a2 + b2 + c2 - ab - bc - ac) = 0
I => 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
I => (a - b)2 + (b - c)2 + (a - c)2 = 0
I => a - b = 0 hay b - c = 0 hay a - c = 0
I => a = b I => b = c I => a = c
I => a = b = c
a + b + c = 0 => a + b = -c
=>(a + b)3 = (-c)3
=>a3 + b3 +3a2b + 3ab2 = (-c)3
=>a3 + b3 + c3 +3ab(a + b) = 0
=>a3 + b3 + c3 = 3abc
Bài 3:
\(a+b+c=0\)
nên a+b=-c
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=0\cdot\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Do đó: \(a^3+b^3+c^3=3abc\)(ĐPCM)
Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath
EM tham khảo nhé!
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(a^3+b^3+c^3-3abc=a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)\)
\(-3ab\left(a+b+c\right)=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\Rightarrow\hept{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
\(\left(a-b\right)^2>=0\Rightarrow a^2-2ab+b^2>=0\Rightarrow a^2+b^2>=2ab\)
tương tự \(a^2+c^2>=2ac;b^2+c^2>=2bc\)
\(\Rightarrow a^2+b^2+a^2+c^2+b^2+c^2>=2ab+2ac+2bc\Rightarrow2\left(a^2+b^2+c^2\right)>=2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2.=ab+ac+bc\)dấu = xảy ra khi a=b=c
mà nếu \(a^2+b^2+c^2-ab-ac-bc=0\Rightarrow a^2+b^2+c^2=ab+ac+bc\Rightarrow a=b=c\)
th1:a+b+c=0
\(\Rightarrow a+b=-c;a+c=-b;b+c=-a\)
\(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}=\frac{ab^2}{a^2+b^2-\left(-c\right)^2}+\frac{bc^2}{b^2+c^2-\left(-a\right)^2}+\frac{ca^2}{c^2+a^2-\left(-b\right)^2}\)
\(=\frac{ab^2}{a^2+b^2-\left(a+b\right)^2}+\frac{bc^2}{b^2+c^2-\left(b+c\right)^2}+\frac{ca^2}{c^2+a^2-\left(c+a\right)^2}\)
\(=\frac{ab^2}{a^2+b^2-a^2-2ab-b^2}+\frac{bc^2}{b^2+c^2-b^2-2bc-c^2}+\frac{ca^2}{c^2+a^2-c^2-2ac-a^2}\)
\(=\frac{ab^2}{-2ab}+\frac{bc^2}{-2bc}+\frac{ca^2}{-2ac}=\frac{b}{-2}+\frac{c}{-2}+\frac{a}{-2}=\frac{a+b+c}{-2}=\frac{0}{-2}=0\)
th2:a=b=c tự lm nhá
ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow c\left(a+b\right)=-ab\Rightarrow a+b=-\frac{ab}{c}\)
CMTT:
\(a+c=-\frac{ac}{b}\)
\(b+c=-\frac{bc}{a}\)
Thay vào biểu thức \(A=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
\(\Rightarrow A=\frac{\left(-\frac{ab}{c}.-\frac{bc}{a}.-\frac{ac}{b}\right)}{abc}=-\frac{a^2b^2c^2}{a^2b^2c^2}=-1\)
T I C K ủng hộ nha mình cảm ơn
___________CHÚC BẠN HỌC TỐT NHA _____________________
a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a3 + b3 ) + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
+) a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
=> \(M=\left(a+b\right)\left(b+c\right)\left(a+b\right)+abc=-abc+abc=0\)
+) a2 + b2 + c2 - ab - bc - ac = 0
<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)( chỗ này bạn tự đánh giá nhé )
=> \(M=\left(a+b\right)\left(b+c\right)\left(a+c\right)+abc=\left(a+a\right)\left(a+a\right)\left(a+a\right)+a\cdot a\cdot a\)
\(=\left(2a\right)^3+a^3=8a^3+a^3=9a^3\)( chỗ này thay là a, b, c tùy bạn nhé ; bằng nhau mà :)) )
Vậy ...