Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy) (vì x-2y=5 và x^2+4y^2=29) (1)
Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)
=> xy=1 (2)
Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155
Vậy gt của bt A là 155
2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab
=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)
=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)
=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)
a) Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)(1)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)nên:
(1) xảy ra\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)
ai làm giúp em phép tính này với em làm mãi ko dc ạ
bài 5 tính nhanh
a 100 -99 +98 - 97 + 96 - 95 + ... + 4 -3 +2
b 100 -5 -5 -...-5 ( có 20 chữ số 5 )
c 99- 9 -9 - ... -9 ( có 11 chữ số 9 )
d 2011 + 2011 + 2011 + 2011 -2008 x 4
i 14968+ 9035-968-35
k 72 x 55 + 216 x 15
l 2010 x 125 + 1010 / 126 x 2010 -1010
e 1946 x 131 + 1000 / 132 x 1946 -946
g 45 x 16 -17 / 45 x 15 + 28
h 253 x 75 -161 x 37 + 253 x 25 - 161 x 63 / 100 x 47 -12 x 3,5 - 5,8 : 0,1
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow14+2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=-7\)
Suy ra : \(\left(ab+bc+ac\right)^2=49\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=49\)
\(a^2+b^2+c^2=14\Leftrightarrow\left(a^2+b^2+c^2\right)^2=196\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=196\)
\(\Leftrightarrow a^4+b^4+c^4+2.49=256\) \(\Leftrightarrow a^4+b^4+c^4=98\)
Vậy ...
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc +2ca=0\)
\(\Leftrightarrow2ab+2bc+2ca=-14\)
\(\Leftrightarrow ab+bc+ca=-7\)
\(\Rightarrow\left(ab+bc+ca\right)^2=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=49\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=49\).
\(a^2+b^2+c^2=14\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=14^2=196\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=196\)
\(\Leftrightarrow a^4+b^4+c^4+2.49=196\)
\(\Leftrightarrow a^4+b^4+c^4=98\)