Cho a,b,c thoả mãn \(a^2+b^2+c^2=a+b+c=2\).

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

Bài 2 :

a ) \(A=\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(A=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+c^2\)

\(A=\left(a^2+2ab+b^2\right)+\left(a^2+2ac+c^2\right)+\left(b^2+2bc+c^2\right)\)

\(A=\left(a+b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\)

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi 

20 tháng 12 2014

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\right)^2-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2-2\frac{x+y+z}{xyz}\)

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\right)^2\)( đpcm )

 

22 tháng 7 2019

#)Giải :

a) Để C/m a và b là hai số đối nhau => a + b = 0

Ta có : \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2-2ab+b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab+b^2=0\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0a\Leftrightarrow a+b=0\)

\(\Rightarrowđpcm\)