Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mk đúng ko
Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0
Giải:
Ta có:
a^2014 + b^2014 + c^2014 = a^1007b^1007 + b^1007c^1007 + c^1007a^1007
=> 2(a^2014 + b^2014 + c^2014) = 2(a^1007b^1007 + b^1007c^1007 + c^1007a^1007)
=> ( a^1007 - b^1007 )^2 + (b^1007 - c^1007)^2 + ( c^1007 - a^1007)^2 = 0
=> a - b - c = 0
Vậy A = 0
Ta có: \(a^{2014}+b^{2014}+c^{2014}=a^{1007}b^{1007}+b^{1007}c^{1007}+c^{1007}a^{1007}\)
\(\Rightarrow a=b=c\) ( tự CM lấy: nhân 2 vế với 2, chuyển vế, nhóm thành từng hằng đẳng thức rồi cm hoặc CM tương tự như bài \(a^2+b^2+c^2=ab+bc+ca\) )
\(\Rightarrow M=\left(a-b\right)^{20}+\left(b-c\right)^{11}+\left(a-c\right)^{2014}=0\)
Vậy M = 0
Lời giải:
Đặt $(a^{1007}, b^{1007}, c^{1007})=(x,y,z)$
Khi đó, ĐKĐB tương đương với:
$x^2+y^2+z^2=xy+yz+xz$
$\Leftrightarrow 2x^2+2y^2+2z^2=2xy+2yz+2xz$
$\Leftrightarrow (x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)=0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0$
Ta thấy $(x-y)^2, (y-z)^2, (z-x)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$
$\Rightarrow x=y=z$
$\Leftrightarrow a^{1007}=b^{1007}=c^{1007}$
$\Leftrightarrow a=b=c$
Khi đó:
$A=0^{2014}+0^{2015}+0^{2016}=0$
Lời giải:
a) Đặt $3^{2014}=a$. Ta có:
\(4^{3^{2014}}-1=4^a-1^a=(4-1)(4^{a-1}+4^{a-2}+....+1)=3(4^{a-1}+4^{a-2}+...+1)\)là hợp số do $3>2; 4^{a-1}+4^{a-2}+...+1>2$
b)
Đặt \(\underbrace{111...1}_{1007}=a\Rightarrow 9a+1=10^{1007}\)
\(\underbrace{111....1}_{2014}+\underbrace{444...4}_{1007}+1=\underbrace{111....1}_{1007}.10^{1007}+\underbrace{111...1}_{1007}+4.\underbrace{111...1}_{1007}+1\)
\(=a(9a+1)+a+4a+1=9a^2+6a+1=(3a+1)^2\) là số chính phương
Ta có đpcm.
Áp dụng BĐT \(x^2+y^2\ge2xy\) ta có:
\(15a^2+15b^4\ge30ab^2\)
\(3b^4+3c^2\ge6b^2c\)
\(1004a^2+1004c^2\ge2008ca\)
Cộng vế với vế: \(1019a^2+18b^4+1007c^2\ge30ab^2+6b^2c+2008ca\)
Dấu "=" xảy ra khi \(a=b^2=c\)