K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

Điều đó là đương nhiên mà. Giả sử x2 + y2 + z2 = 5 thì x2 + y2 + z\(\le\) 

29 tháng 6 2015

Áp dụng bất đẳng thức Bu.nhia.cop.xki cho 2 bộ 3 số: 

\(\left(a+2b+3c\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b+\sqrt{3}.\sqrt{3}c\right)^2\)

\(\le\left(1+2+3\right)\left(a^2+2b^2+3c^2\right)=6.6=36\)

\(\Rightarrow\left|a+2b+3c\right|\le6\)

\(\Rightarrow-6\le a+2b+3c\le6\)

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

NV
29 tháng 4 2021

\(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\)

\(\Leftrightarrow a^2\le3a+10\)

Tương tự: \(b^2\le3b+10\Rightarrow2b^2\le6b+20\)

\(c^2\le3c+10\Rightarrow3c^2\le9c+30\)

Cộng vế:

\(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le66\) (đpcm)

10 tháng 2 2017

=4 nhé

10 tháng 2 2017

nó bảo sai bạn ạ