K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2017

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc\)

\(\Leftrightarrow a^2+b^2+c^2-\left(ab+bc+ac\right)=3abc\)

\(\Leftrightarrow\left(a+b+c\right)^2-3\left(ab+bc+ac\right)=3abc\)

Đặt \(\left(a+b+c,ab+bc+ac,abc\right)=\left(p,q,r\right)\)

\(\Rightarrow p^2-3q=3r\)

Khi đó \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ac\right)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=p^3+3pq+3r=p\left(p^2-3q\right)+3r=3pr+3r\)

Vậy .....

Chúc bạn học tốt!

Chép mạng

23 tháng 8 2019

Đề<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=6abc

<=>a^2+b^2+c^2-ab-bc-ca=3abc 

nhân cả hai vế với a+b+c+1 ta đc câu trả lời 

chúc bạn học tốt

cho mình hỏi ai còn cách khác bài bạn cậu chủ họ Lương thì gợi ý giúp mình vs nhé.

tks!

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

15 tháng 12 2016

1) Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

2)Có: \(a+b-c=0\)

\(\Leftrightarrow a+b=c\)

\(\Leftrightarrow\left(a+b\right)^3=c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)

\(\Leftrightarrow a^3+b^3+3abc=c^3\)

\(\Leftrightarrow a^3+b^3-c^3=-3abc\)

 

a: \(\left(ax-by\right)^2+\left(bx+ay\right)^2\)

\(=a^2x^2-2axby+b^2y^2+b^2x^2+2abxy+a^2y^2\)

\(=a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)\left(a^2+b^2\right)\)

c: \(a^2+2ab+b^2-c^2\)

\(=\left(a+b\right)^2-c^2\)

\(=\left(a+b+c\right)\left(a+b-c\right)\)

\(=4m\cdot\left(4m-2c\right)\)

\(=16m^2-8mc\)

7 tháng 10 2020

hem biet

3 tháng 9 2018

Bài 1:

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b+c\right)^3-a^3\right]-\left(b^3+c^3\right)\)

\(=\left(a+b+c-a\right)\left[\left(a+b+c\right)^2+\left(a+b+c\right)a+a^2\right]-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac+a^2+ab+ac+a^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2\right)-\left(b+c\right)\left(b^2-bc+c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+2bc+b^2+c^2-b^2+bc-c^2\right)\)

\(=\left(b+c\right)\left(3a^2+3ab+3ac+3bc\right)\)

\(=3\left(b+c\right)\left(a^2+ab+ac+bc\right)\)

\(=3\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=3\left(b+c\right)\left(a+b\right)\left(a+c\right)\)

b) \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Bài 2:

Từ câu 1b ta đã chứng minh được:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Thay a + b + c = 0 vào ta được

\(a^3+b^3+c^3-3abc=0\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

5 tháng 9 2018

Cảm ơn b nhìu

1 tháng 10 2017

d) => 2a^2 + 2b^2 + 2c^2 = 2ab+ 2bc + 2ca

    => 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

( a^2 - 2ab+b^2 ) + ( a^2 - 2ac + c^2) + ( b^2 - 2bc - c^2) = 0

(a-b)^2 + (a-c)^2 + (b-c)^2 = 0

=> | ( a-b)^2 = 0 => a=b     
     |  ( a-c)^2 = 0 => a=c
     |  ( b-c)^2 = 0 => b=c

=>>> a=b=c

1 tháng 10 2017

b) => 2(a-b)^2 - (a-b)^2  = 0

   2 ( a^2- 2ab + b^2) - a^2+ 2ab - b^2 = 0

  2a^2 - 4ab+ 2b^2 - a^2 + 2ab - b^2 = 0

 a^2 -2ab + b^2 =0 

( a-b)^2 = 0 => a=b

Cái này bạn nên xem lại đề có đúng ko nha~~ Mk ko lm ra số đối đc Sorry