Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a;b;c là 3 số thỏa mãn: abc = 1. Tính S = \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
Ta có: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)
\(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)
\(=\frac{1+b+bc}{bc+b+1}\)
\(=1\)
Xét : a/ab+a+1 = a/ab+a+abc = 1/b+bc+1
c/ac+c+1 = bc/abc+bc+b = bc/bc+b+1
=> S = 1+b+bc/bc+b+1 = 1
Vậy S = 1
Tk mk nha
\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(S+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)+\left(1+\frac{c}{a+b}\right)\)
\(S+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
\(S+3=\frac{2014.1}{2014}=1\Rightarrow S=1-3=-2\)
a)Áp dụng BĐT cosi-schwart:
`A=1/a+1/b+1/c>=9/(a+b+c)`
Mà `a+b+c<=3/2`
`=>A>=9:3/2=6`
Dấu "=" `<=>a=b=c=1/2`
b)Áp dụng BĐT cosi:
`a+1/(4a)>=1`
`b+1/(4b)>=1`
`c+1/(4c)>=1`
`=>a+b+c+1/(4a)+1/(4b)+1/(4c)>=3`
Ta có:
`1/a+1/b+1/c>=6`(Ở câu a)
`=>3/4(1/a+1/b+1/c)>=9/2`
`=>a+b+c+1/(a)+1/(b)+1/(c)>=3+9/2=15/2`
Dấu "=" `<=>a=b=c=1/2`
a)Áp dụng BĐT cosi-schwart:
A=1a+1b+1c≥9a+b+cA=1a+1b+1c≥9a+b+c
Mà a+b+c≤32a+b+c≤32
⇒A≥9:32=6⇒A≥9:32=6
Dấu "=" ⇔a=b=c=12⇔a=b=c=12
b)Áp dụng BĐT cosi:
a+14a≥1a+14a≥1
b+14b≥1b+14b≥1
c+14c≥1c+14c≥1
⇒a+b+c+14a+14b+14c≥3⇒a+b+c+14a+14b+14c≥3
Ta có:
1a+1b+1c≥61a+1b+1c≥6(Ở câu a)
⇒34(1a+1b+1c)≥92⇒34(1a+1b+1c)≥92
⇒a+b+c+1a+1b+1c≥3+92=152⇒a+b+c+1a+1b+1c≥3+92=152
Dấu "=" ⇔a=b=c=12
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
abc=a+b+c => 1 = 1/ab + 1/bc + 1/ac
2 = 1/a+1/b+1/c => 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2/ab + 2/ac + 2/cb
=> 4 = 1/a^2 + 1/b^2 + 1/c^2 + 2(1/ab + 1/ac + 1/bc) = M + 2
=> M = 4 - 2 = 2
Mk làm bài đầu thôi,sáng nay mk làm cái tt cho
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\)\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\) (do a+b+c = abc)
\(\Leftrightarrow\)\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) <=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{a^2b}+\frac{3}{ab^2}=-\frac{1}{c^3}\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)\)
<=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Khi đó, A = \(\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc\cdot\frac{3}{abc}=3\)
Xét: \(A=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Ta có đẳng thức sau: \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz\)
(Đẳng thức này chứng minh rất dễ nha, chỉ cần bung hết ra là được)
Vậy ta thế \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\)vào đẳng thức:
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\)
\(=\frac{3}{abc}\)Vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)---> Thế cái này vào A:
\(\Rightarrow A=abc.\frac{3}{abc}=3\)
Xoooooooong !!!!! :)))
Đặt : \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=P\)
\(\Rightarrow\left(a+b+c\right).P=\frac{1}{2019}.2019\)
\(\Rightarrow1+\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}=\frac{6057}{2019}+\frac{\left(-4038\right)}{2019}\)
\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=3+\left(-2\right)\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=-2\)
Dự đoán điểm rơi \(a=b=c=\frac{1}{3}\)
Khi đó:
\(S=a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(=\left(a+b+c+\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)+8\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)
\(\ge6\sqrt[6]{a\cdot b\cdot c\cdot\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}+24\sqrt[3]{\frac{1}{9a}\cdot\frac{1}{9b}\cdot\frac{1}{9c}}\)
\(=2+\frac{8}{3}\cdot\frac{1}{\sqrt[3]{abc}}\ge2+\frac{8}{3}\cdot\frac{1}{\frac{a+b+c}{3}}\ge10\)
Mù mắt với AM-GM cho 10 số:v
\(S=\left(a+b+c\right)+9\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)\)\(\ge10\sqrt[10]{\left(a+b+c\right)\left(\frac{1}{9a}+\frac{1}{9b}+\frac{1}{9c}\right)^9}\)\(\ge10\sqrt[10]{\left(3\sqrt[3]{abc}\right)\left[3\sqrt[3]{\frac{1}{9^3abc}}\right]^9}=10\sqrt[10]{\left(3\sqrt[3]{abc}\right).\left[3^9\left(\frac{1}{9^3abc}\right)^3\right]}\)
\(=10\sqrt[10]{3^{10}.\frac{\sqrt[3]{abc}}{\left(3^6abc\right)^3}}=10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left(abc\right)^8}}}\ge10\sqrt[10]{\frac{1}{3^8\sqrt[3]{\left[\frac{\left(a+b+c\right)^3}{27}\right]^8}}}\ge10\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Vậy.....