K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Lời giải:
a. Xét tam giác $AOB$ và $EOC$ có:

$\widehat{AOB}=\widehat{EOC}$ (đối đỉnh)

$AO=EO$ (gt)

$OB=OC$ (do $O$ là trung điểm $BC$)

$\Rightarrow \triangle AOB=\triangle EOC$ (c.g.c)

b.

Từ tam giác bằng nhau phần a suy ra:

$AB=EC$ (đpcm)

$\widehat{OAB}=\widehat{OEC}$. Mà 2 góc này ở vị trí so le trong nên $AB\parallel CE$ (đpcm)

c.

Xét tam giác $BMC$ và $CNB$ có:

$\widehat{BMC}=\widehat{CNB}=90^0$

$BC$ chung

$\widehat{MBC}=\widehat{NCB}$ (so le trong)

$\Rightarrow \triangle BMC=\triangle CNB$ (g.c.g)

$\Rightarrow BM=NC$

Xét tam giác $BMO$ và $CNO$ có:

$BM=CN$ (cmt)

$\widehat{MBO}=\widehat{NCO}$ (so le trong)

$BO=CO$

$\Rightarrow \triangle BMO=\triangle CNO$ (c.g.c)

$\Rightarrow \widehat{BOM}=\widehat{CON}$

$\Rightarrow \widehat{BOM}+\widehat{BON}=\widehat{CON}+\widehat{BON}$

$\Rightarrow \widehat{MON}=\widehat{BOC}=180^0$

$\Rightarrow M, O, N$ thẳng hàng.

AH
Akai Haruma
Giáo viên
26 tháng 12 2022

Hình vẽ:

a: Xét ΔAOB và ΔEOC có

OA=OE

\(\widehat{AOB}=\widehat{EOC}\)

OB=OC

Do đó: ΔAOB=ΔEOC

b: Xét tứ giác ABEC có

O là trung điểm của AE

O là trung điểm của BC

Do đó: ABEC là hình bình hành

Suy ra: AB=EC và AB//EC

a: Ta có: ΔBDC vuông tại D

mà DO là đường trung tuyến

nên DO=BC/2

a) Xét ∆BAD và ∆BDE có

    AB = BE (gt)

    góc ABD = góc DBE ( AD là phân giác ABC)

    BD chung

do đó ∆ABE = ∆BED (c.c.c)

=> AD = DE

b) Gọi giao điểm của BD và FC là H

Xét ∆ADF và ∆EDC có:

   AD = DE (cmt)

   góc ADF = góc EDC (2 góc đối đỉnh)

   AF = EC (gt)

do đó ∆ADF = ∆DEC (c.g.c)

=> DF = DC

=> ∆DFC cân tại D

=> DH là đường cao => DH ⊥ FC

=> BD ⊥ FC (D ∈ BH)

c) Sai đề r

8 tháng 12 2023

a) Ta có AB = BE và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có AD = DC. 

 

Vì AB = BE, nên ta có AD = DC = DE. Vậy, ta đã chứng minh AD = DE.

 

b) Ta có AF = EC và tam giác ABC vuông tại A, nên ta có AB = AC. Do đó, tam giác ABC là tam giác cân tại A. Khi đó, phân giác BD cũng là đường trung tuyến của tam giác ABC, nên ta có BD = DC.

 

Vì AF = EC và AB = AC, nên ta có AF = BD. Từ đó, ta có tam giác AFB cân tại A và tam giác BDC cân tại D. 

 

Vì tam giác AFB cân tại A, nên góc BAF = góc BFA. Vì tam giác BDC cân tại D, nên góc BDC = góc CBD.

 

Từ đó, ta có góc BAF = góc BFA = góc BDC = góc CBD. Vậy, ta đã chứng minh BD vuông FC.

 

c) Ta đã chứng minh BD vuông FC ở câu b. Vì BD vuông FC và tam giác ABC vuông tại A, nên ta có AE // FC theo tính chất của các góc đối.

 

d) Ta đã chứng minh BD vuông FC ở câu b. Vì BD là phân giác của tam giác ABC, nên ta có AD = DE. Vì AF = EC, nên ta có AF = BD. 

 

Vậy, ta có AD = DE = AF. Từ đó, ta có ba điểm D, E, F thẳng hàng.

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

DO đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)EB tại E

=>DE\(\perp\)BC tại E

Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó: ΔDAF=ΔDEC

=>DF=DC

=>D nằm trên đường trung trực của FC(1)

Ta có:BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

=>B nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD là đường trung trực của CF

=>BD\(\perp\)CF

c: Ta có: BA=BE

=>B nằm trên đường trung trực của AE(3)

Ta có: DA=DE

=>D nằm trên đường trung trực của AE(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE

Ta có:BD\(\perp\)AE

BD\(\perp\)FC

Do đó: AE//FC

d: Ta có; ΔDAF=ΔDEC

=>\(\widehat{ADF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{EDA}=180^0\)(hai góc kề bù)

nên \(\widehat{ADF}+\widehat{ADE}=180^0\)

=>F,D,E thẳng hàng

10 tháng 1 2018

A B C M N F E

a) Xét \(\Delta BNM\)và \(\Delta ACM\)có :

NM = MC ( gt )

\(\widehat{NMB}=\widehat{CMA}\)( hai góc đối đỉnh )

MB = MA ( gt )

Suy ra : \(\Delta BNM\)\(\Delta ACM\)( c.g.c )

\(\Rightarrow NB=AC\)( hai cạnh tương ứng )

\(\Rightarrow\widehat{BNM}=\widehat{ACM}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên NB // AC

b) Xét \(\Delta BNC\)có \(\widehat{EBC}\)là góc ngoài nên \(\widehat{EBC}\)\(\widehat{BNC}+\widehat{BCN}\)hay \(\widehat{EBC}\)\(\widehat{ACM}+\widehat{BCN}=\widehat{ACB}\)

Xét \(\Delta BEC\)và \(\Delta BAC\)có :

BE = AC ( vì NB = BE = AC )

\(\widehat{EBC}\)\(\widehat{ACB}\)( cmt )

BC ( cạnh chung )

Suy ra : \(\Delta BEC\)\(\Delta BAC\)( c.g.c )

\(\Rightarrow AB=EC\)( hai cạnh tương ứng )

c) Vì \(\widehat{EFC}=\widehat{AFB}\)( hai góc đối đỉnh )

Mà \(\widehat{AFB}=180^o-\widehat{AFC}\) 

\(\Rightarrow\widehat{EFC}+\widehat{AFC}=180^o-\widehat{AFC}+\widehat{AFC}=180^o\)

\(\Rightarrow\widehat{AFE}\)là góc bẹt nên A,F,E thẳng hàng

12 tháng 3 2017

câu d vẽ tam giác đều ACO .từ o kẻ đường vuông góc với hk tại p.tam giác  CAH  BẰNG tam giác COP cạnh huyền góc nhọn.                 suy ra CP=AH SUY RA PK=PC=AH.tam giác OKP BẰNG tam giác OCP C.G.C                                                                                              SUY RA GÓC OKC = 15 . GÓC AKC=30 suy ra góc KAC = 180-30-75=75 SUY RA BAK=45

12 tháng 3 2017

góc BAK=45

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@