Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đơn giản thôi:
Vẽ AO, BO, CO
Ta có: \(\hept{\begin{cases}AE^2=AO^2-OE^2\\BF^2=BO^2-OF^2\\CD^2=OC^2-OD^2\end{cases}}\)
Cộng vế theo vế:
Ta có: \(AE^2+BF^2+CD^2=AO^2-OE^2+BO^2-OF^2+OC^2-OD^2\)
Suy ra: \(AE^2+BF^2+CD^2=\left(AO^2-OF^2\right)+\left(BO^2-OD^2\right)+\left(OC^2-OE^2\right)=AF^2+BD^2+CE^2\)
Vậy...............
Bài 1:
a: Ta có: ΔABC đều
mà BD,CE là các đường phân giác
nên BD,CE là các đường cao
b: Ta có: ΔABC đều
mà BD,CE là các đường cao
và BD cắt CE tại O
nên O là tâm đường tròn ngoại tiếp của ΔABC
Suy ra: OA=OB=OC
1,
Bài này kinh khủng quá xD chịu r
2,
a, Kẻ AO là pg của EAF^
Do O là trực tâm
Xét tg vuông OEA và tg vuông OFA có :
A1^ = A2^ ( dựng hình )
AO chung
=> tg OEA = tg OFA ( ch-gn )
=> OE = OF ( cạnh tương ứng )
b, Áp dụng định lí pi ta go cho tg ABC vuông tại A có :
BC^2 = 3^2 + 4^2 = 9 + 16 = 25 = 5^2
<=> BC = 5
Thay vào đề ta có :
AB + AC - BC = 2 AE ( Bất đẳng thứ tam giác và đã thỏa mãn )
<=> 4 + 3 - 5 = 2 AE
<=> 2 = 2 AE
<=> AE = 1
Xét \(\Delta OAE\) vuông tại E ta có :
\(CE^2=OC^2-OA^2\) (Định lí Py ta go) \(\left(1\right)\)
Xét \(\Delta OBF\) vuông tại F có :
\(BF^2=OB^2-OF^2\) (Đính lí Py ta go) \(\left(2\right)\)
Xét \(\Delta OAD\) vuông tại D có :
\(AD^2=OA^2-OD^2\) (Đính lí Py ta go) \(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow AD^2+BF^2+CE^2=OC^2-OA^2+OB^2-ÒF^2+OA^2-OD^2\)
\(\Leftrightarrow AE^2+BF^2+CD^2=\left(AO^2-ÒD^2\right)+\left(OC^2-OF^2\right)+\left(OB^2-OD^2\right)\)
\(\Leftrightarrow AD^2+BF^2+CE^2=AE^2+CF^2+BD^2\left(đpcm\right)\)
Cho ΔABC, trung tuyến AM. CMR \(2AM^2=AC^2+AB^2-\dfrac{1}{2}BC^2\)
Giúp mik câu này với!!