K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

1/ Ttứ giác BHCE có HE giao CD tại trung điểm D của cả 2 đoạn

 ---> Hình bình hành

2/ Vì H là trực tâm tam giác ABC

--> HC vuông góc AB

mà HC // BE do t/c cạnh đối của hình bình hành

---> đpcm

5 tháng 8 2019

3/ Nối ID

Chứng minh được ID là đường trung bình tam giác AHE

---> ID vuông góc BC tại D, D là trung điểm BC

Gọi K là trung điểm AC

Chứng minh được IK lả đường trung bình của tam giác ACE

---> IK // CE

suy ra IK vuông góc AC tại trung điểm K của AC

Vậy.....

20 tháng 12 2020

undefined

9 tháng 1 2021

sai rồi

22 tháng 12 2016

trực tâm ở cạnh nào hay góc nào bạn?

có trực tâm chính xác sẽ làm dễ hơn

22 tháng 12 2016

trực tâm là giao 3 đường cao trong tâm giác mà bạn

 

a, 

Ta có ON // BH ( cùng vuông góc với AC )

OM // AH ( cùng vuông góc với BC )

MN // AB ( MN là đường trung bình của tam giác ABC )

Vậy tam giác OMN đồng dạng với tam giác HAB.

b,

Xét tam giác AHG và MOG có :

\(+,\widehat{HAG}=\widehat{OMG}\)( Do AH // OM )

\(+,\frac{OM}{AH}=\frac{MN}{AB}=\frac{1}{2}=\frac{GM}{GA}\)( DO 2 TAM GIÁC ĐỒNG DẠNG Ở CÂU a, )

Từ đó ta có tam giác AHG đồng dạng với tam giác MOG(c.g.c) nên \(\frac{OG}{HG}=\frac{MG}{MA}=\frac{1}{2}\)

Và \(\widehat{HGO}=\widehat{HGA}+\widehat{AGO}=\widehat{OGM}+\widehat{AGO}=\widehat{AGM}=180^0\)

\(\Rightarrow H,G,O\)thẳng hàng

31 tháng 10 2021

a: Xét tứ giác BHCI có 

E là trung điểm của BC

E là trung điểm của HI

Do đó: BHCI là hình bình hành

a: OM//AH

ON//BH

MN//AB

=>góc BAH=góc OMN và góc ABH=góc ONM

=>ΔABH đồng dạng vơi ΔMNO

b: G là trọng tâm của ΔABC

=>GM/GA=1/2

ΔABH đồng dạng với ΔMNO nên OM/AH=MN/AB=1/2

=>OM/AH=MG/AG

=>ΔHAG đồng dạng với ΔOMG

c: ΔHAG đồng dạng với ΔOMG

=>góc AGH=góc OGM

=>H,G,O thẳng hàng