Cho ∆ABC nhọn, đường cao AH, trung tuyến AD. Từ D kẻ DK vuông góc AB (K thuộc AB) và DI...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBKD vuông tại K và ΔBHA vuông tạiH có

góc KBD chung

=>ΔBKD đồng dạng với ΔBHA

=>BK/BH=BD/BA

=>BK*BA=BH*BD; BK/BD=BH/BA

b: Xét ΔBKH và ΔBDA có

BK/BD=BH/BA

góc KBH chung

=>ΔBKH đồng dạng với ΔBDA
c: ΔBKH đồng dạng với ΔBDA

=>\(\dfrac{S_{BKH}}{S_{BDA}}=\left(\dfrac{BH}{BA}\right)^2=\dfrac{4}{9}\)

=>\(S_{BDA}=64:\dfrac{4}{9}=144\left(cm^2\right)\)

3 tháng 3 2022

Đăng lại sang box Toán

3 tháng 3 2022

/?/????????

2 tháng 3 2022

lỗi rùibucminh

2 tháng 3 2022

loi

a: Xet ΔBKD vuông tại K và ΔBHA vuông tại H có

góc B chung

=>ΔBKD đồng dạng với ΔBHA

=>BK/BH=BD/BA

=>BK*BA=BH*BD; BK/BD=BH/BA

b: Xét ΔBKH và ΔBDA có

BK/BD=BH/BA

góc B chung

=>ΔBKH đồng dạng với ΔBDA

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

5 tháng 3 2022
a)tg BKD ~tg BHA(g.g) =>BK/BD = BH/BA =>BK.BA=BD.BH

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.

b) Ta cần chứng minh DMBN là hình bình hành.

Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.

Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.

Vì AM=CN, nên ta có góc MAB = góc NCD.

Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.

Vì AB || CD, nên góc DMB = góc NCB.

Vì AD || BC, nên góc DMB = góc BDN.

Từ đó, ta có góc DMB = góc NCB = góc BDN.

Vậy DMBN là hình bình hành.

Bạn tích cho mik nha!

Nhớ tick cho mik nha!

Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.

Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.

Gọi P là giao điểm của hai đường thẳng AM và CN.

Ta có:
AP = AM - MP
CP = CN - NP

Vì AM = CN và am < cn, nên AM - MP < CN - NP.

Do đó, AP < CP.

Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.

Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.

Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.

Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.

Gọi Q là giao điểm của hai đường thẳng BM và DN.

Ta có:
BQ = BM - MQ
DQ = DN - NQ

Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.

Do đó, BQ < DQ.

Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.

Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.