Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ACM=1/2*sđ cung AM=90 độ
b: góc ADB=góc AEB=90 độ
=>ABDE nội tiếp
a) 3 đường cao AD;BE;CF của \(\Delta\)ABC gặp nhau tại H.
Thấy ngay: Tứ giác BFHD nội tiếp đường tròn => ^FBH=^FDH (1)
Tương tự: ^ECH=^EDH (2)
Từ (1) và (2) kết hợp với ^FBH=^ECH (Cùng phụ ^BAC) => ^FDH=^EDH
=> DH là tia phân giác của ^FDE.
Ta có: MN // BC và AD vuông BC => MN vuông AD (Quan hệ //, vg góc)
Xét \(\Delta\)MDN: DH vuông MN (cmt); DH là p/g ^MDN (hay ^FDE)
=> \(\Delta\)MDN cân đỉnh D => DM=DN => AD là đường trung trực của MN
=> AM=AN => \(\Delta\)AMN cân đỉnh A (đpcm).
b) Tia AM cắt BC tại K.
Xét \(\Delta\)NAI: ^AIN=1800 - (^IAN + ^INA) (3)
Ta thấy: ^IAN = ^MAI - ^MAN = ^BAC - ^MAN = ^BAM + ^CAN (Do ^MAI=^BAC)
^INA= ^NAD + ^NDA (Do ^INA là góc ngoài tam giác AND)
=> ^IAN + ^INA = ^BAM + (^CAN +^NAD) + ^NDA = ^BAM + ^NDA + ^DAC
= ^BAM + ^NDA + ^CBE
Lại có: Tứ giác AEDB nội tiếp đường tròn => ^ADE=^ABE hay ^NDA=^ABE
=> ^IAN + ^INA = ^BAM + ^CBE + ^ABE = ^BAM + ^ABC= ^BAK + ^ABK
Mà ^AMN=^AKC (Đồng vị) = ^BAK + ^ABK (Góc ngoài đỉnh K tam giác AKB)
Suy ra: ^IAN + ^INA = ^AMN (4)
Thế (4) vào (3) => ^AIN = 1800 - ^AMN <=> ^AIN + ^AMN =1800
=> Tứ giác AMNI nội tiếp đường tròn (đpcm).
c) Dễ c/m \(\Delta\)AMD=\(\Delta\)AND (c.c.c) => ^AMD=^AND <=> 1800-^AMD=1800-^AND
=> ^AMF=^ANI. Mà tứ giác AMNI nt => ^ANI=^AMI
Do đó: ^AMF=^AMI => MA là tia phân giác ^FMI (đpcm).
cảm ơn bạn Kurokawa Neko, bạn trả lời sớm giúp mình, mình đang ôn đội tuyển nên có rất nhiều bài cần hỏi, bạn giúp mình nha.
Cảm ơn!
+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.
\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)
Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.
\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)
Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)
+) Ta có \(\widehat{ADC}=\widehat{ABC}\) (Hai góc nội tiếp cùng chắn cung AC)
Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\)
nên \(\widehat{ADC}=\widehat{HMN}\)
Chúng lại ở vị trí so le trong nên DC // HM
Ta có \(DC\perp AC\Rightarrow HM\perp AC\)
Gọi J là trung điểm AB
Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC
Vậy nên \(HM\perp IJ\)
Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.
Vậy thì IM = IH.
Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.
Bài 1:
+) Chứng minh tứ giác BFLK nội tiếp:
Ta thấy FAH và LAH là hai tam giác vuông có chung cạnh huyền AH nên AFHL là tứ giác nội tiếp. Vậy thì \(\widehat{ALF}=\widehat{AHF}\) (Hai góc nội tiếp cùng chắn cung AF)
Lại có \(\widehat{AHF}=\widehat{FBK}\) (Cùng phụ với góc \(\widehat{FAH}\) )
Vậy nên \(\widehat{ALF}=\widehat{FBK}\), suy ra tứ giác BFLK nội tiếp (Góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện)
+) Chứng minh tứ giác CELK nội tiếp:
Hoàn toàn tương tự : Tứ giác AELH nội tiếp nên \(\widehat{ALE}=\widehat{AHE}\) , mà \(\widehat{AHE}=\widehat{ACD}\Rightarrow\widehat{ALE}=\widehat{ACD}\)
Suy ra tứ giác CELK nội tiếp.
a: góc ACM=1/2*sđ cung AM=90 độ
góc BAD+góc ABD=90 độ
góc MAC+góc AMC=90 độ
mà góc ABD=góc AMC
nên góc BAD=góc MAC
b: góc AEB=góc ADB=90 độ
=>AEDB nội tiếp