K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2023

 

a)

Xét ΔAIB và ΔAID có:

Góc BAI= Góc DAI (gt)

AB=AD

AI chung

→ ΔAIB=ΔAID (c.g.c)

⇒ IB=ID (2 cạnh tương ứng)

b)

Vì góc AIB= góc AID (2 góc tương ứng)

a: Xét ΔABI và ΔADI có

AB=AD
\(\widehat{BAI}=\widehat{DAI}\)

AI chung

Do đó: ΔABI=ΔADI

=>\(\widehat{BIA}=\widehat{DIA}\)

=>IA là phân giác của góc BID

b: Ta có: ΔABI=ΔADI

=>\(\widehat{ABI}=\widehat{ADI}\) và IB=ID

Ta có: \(\widehat{ABI}+\widehat{IBE}=180^0\)(hai góc kề bù)

\(\widehat{ADI}+\widehat{CDI}=180^0\)(hai góc kề bù)

mà \(\widehat{ABI}=\widehat{ADI}\)

nên \(\widehat{IBE}=\widehat{CDI}\)

Xét ΔIBE và ΔIDC có

\(\widehat{IBE}=\widehat{IDC}\)

IB=ID

\(\widehat{BIE}=\widehat{DIC}\)(hai góc đối đỉnh)

Do đó: ΔIBE=ΔIDC

=>BE=DC

Xét ΔAEC có \(\dfrac{AB}{BE}=\dfrac{AD}{DC}\)

nên BD//CE
 

23 tháng 1 2022

a) Xét tam giác ABD: AB = AD (gt). 

=> Tam giác ABD cân tại A.

Mà AH là phân giác góc BAD (gt).

=> AH là trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của cạnh BD (đpcm).

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

a: Ta có: ΔABD cân tại A

mà AH là đường phân giác

nên H là trung điểm của BD

b: Xét ΔABF và ΔADF có 

AB=AD

\(\widehat{BAF}=\widehat{DAF}\)

AF chung

Do đó: ΔABF=ΔADF

Suy ra: FB=FD

Xét ΔBFE và ΔDFC có

FB=FD

\(\widehat{FBE}=\widehat{FDC}\)

BE=DC

Do đó: ΔBFE=ΔDFC

Suy ra: \(\widehat{BFE}=\widehat{DFC}\)

mà \(\widehat{DFC}+\widehat{DFB}=180^0\)

nên \(\widehat{BFE}+\widehat{BFD}=180^0\)

=>D,E,F thẳng hàng

30 tháng 1 2022

5. ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)     \(a.b=c.d\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{\left(a+b\right)^2-2ab}{\left(c+d\right)^2-2cd}\)

Mà a+b = c+ d; ab = cd

=> đfcm

 

Bài 4: 

a: Ta có: I nằm trên đường trung trực của AD

nên IA=ID

Ta có: I nằm trên đường trung trực của BC

nên IB=IC

b: Xét ΔIAB và ΔIDC có 

IA=ID

\(\widehat{AIB}=\widehat{DIC}\)

IB=IC

Do đó: ΔIAB=ΔIDC

a: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)

b: Xét ΔABI vuông tại A và ΔDBI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔABI=ΔDBI

c: Ta có: ΔABI=ΔDBI

nên IA=ID

d: Ta có: ΔABI=ΔDBI

nên \(\widehat{AIB}=\widehat{DIB}\)

hay IB là tia phân giác của góc AID

3 tháng 3 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{4^2+6^2}=\sqrt{52}=2\sqrt{13}cm\)

b.c.d.Xét tam giác vuông ABI và tam giác vuông DBI, có:

góc ABI = góc DBI ( gt )

AI: cạnh chung

Vậy tam giác vuông ABI = tam giác vuông DBI ( cạnh huyền. góc nhọn )

=> IA = ID ( 2 cạnh tương ứng )

=> góc AIB = góc DIB ( 2 góc tương ứng )

=> IB là tia phân giác góc AID