K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 3 2021
Câu 8:
a) Xét tứ giác BFEC có
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
AH
Akai Haruma
Giáo viên
25 tháng 3 2021
Lời giải:
a) Tứ giác $AFHE$ có tổng 2 góc đối nhau $\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0$ nên $AFHE$ là tứ giác nội tiếp.
b) $AK$ là đường kính thì $\widehat{ACK}=90^0$ (góc nt chắn nửa đường tròn)
Xét tam giác $ABD$ và $AKC$ có:
$\widehat{ADB}=\widehat{ACK}=90^0$
$\widehat{ABD}=\widehat{AKC}$ (góc nt cùng chắn cung $AC$)
$\Rightarrow \triangle ABD\sim \triangle AKC$ (g.g)
$\Rightarrow \frac{AB}{AD}=\frac{AK}{AC}$
$\Rightarrow AB.AC=AD.AK$ (đpcm)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{EFH}=\widehat{CAD}\)(EAFH nội tiếp)
\(\widehat{DFH}=\widehat{CBE}\)(BDHF nội tiếp)
mà \(\widehat{CAD}=\widehat{CBE}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
=>FC là phân giác của góc EFD
b: Kẻ tiếp tuyến Cx của (O)
=>OC\(\perp\)Cx tại C
Xét tứ giác AEDB có \(\widehat{AEB}=\widehat{ADB}=90^0\)
nên AEDB là tứ giác nội tiếp
=>\(\widehat{EDB}+\widehat{EAB}=180^0\)
mà \(\widehat{EDB}+\widehat{CDE}=180^0\)(hai góc kề bù)
nên \(\widehat{CDE}=\widehat{CAB}\)
Xét (O) có
\(\widehat{xCB}\) là góc tạo bởi tiếp tuyến Cx và dây cung CB
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
Do đó: \(\widehat{xCB}=\widehat{CAB}\)
=>\(\widehat{xCB}=\widehat{CDE}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Cx//DE
Ta có: Cx//DE
Cx\(\perp\)CO
Do đó: DE\(\perp\)OC