: Cho ABC nhọn (AB < AC ) nội tiếp đường tròn (O)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

nên AMHN là tứ giác nội tiếp

b: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BNMC là tứ giác nội tiếp

=>\(\widehat{BNM}+\widehat{BCM}=180^0\)

mà \(\widehat{BNM}+\widehat{ANM}=180^0\)(hai góc kề bù)

nên \(\widehat{ANM}=\widehat{ACB}\)

7 tháng 6 2021

A B C O E F K I J H M N S T L

c) AT là đường kính của (O), dễ thấy H,K,T thẳng hàng, gọi TH cắt (O) lần nữa tại S, ta được ^ASH = 900

Ta có A,E,H,F,S cùng thuộc đường tròn đường kính AH, suy ra:

(ES,EF) = (AS,AB) = (SC,SB), (SF,SE) = (BS,BC) do đó \(\Delta\)SFE ~ \(\Delta\)SBC

Vì K,L là trung điểm của BC,EF nên \(\Delta\)SFL ~ \(\Delta\)SBK, suy ra \(\Delta\)SFB ~ \(\Delta\)SLK, (KS,KL) = (BS,BA) (1)

Lại có: \(\frac{MF}{MB}=\frac{HF}{HB}=\frac{HE}{HC}=\frac{NE}{NC}\)\(\Delta\)SEC ~ \(\Delta\)SFB, suy ra \(\Delta\)SMN ~ \(\Delta\)SBC

Tương tự như trên, ta thu được (KS,KI) = (BS,BA) (2)

Từ (1);(2) suy ra K,I,L thẳng hàng. Mặt khác K,L,J thẳng hàng vì chúng cách đều E,F.

Do vậy I,J,K thẳng hàng.

22 tháng 3 2021

sao chụy là cô giáo mà chụy hỏi nhiều zậy

22 tháng 3 2021

Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)

30 tháng 6 2021

Gọi I là trung điểm của BC => BI=IC=1/2 BC (1)

Vì tam giác FBC vuông tại F; FI là đường trung trực của BC =>FI = 1/2 BC (2)

Tương tự => EI = 1/2 BC (3)

Từ (1), (2) và (3) =>EI = BI = IC = FI = 1/2 BC

=>E, B, C, F thuộc một đường tròn

3 tháng 5 2019
https://i.imgur.com/jEdEx2p.jpg
3 tháng 5 2019

Ôn tập góc với đường tròn

28 tháng 6 2021

A B O C D E M H K

a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)

       OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)

Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)

=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện  = 1800)

b) Xét \(\Delta\)EKD và \(\Delta\)EDB

có: \(\widehat{BED}\):chung

 \(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)

 => \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)

=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)

Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD

 OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD

Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)

Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)

Xét tam giác EHK và tam giác EBO

có: \(\widehat{OEB}\): chung

 \(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)

=> tam giác EHK ∽ tam giác EBO (c.g.c)

=> \(\widehat{EHK}=\widehat{KBA}\)

c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)

=> OM.EC = AE.MC

Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)

Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)

mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)

=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME

=> \(\frac{OM}{EM}=1\)

=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)

Vẽ đường kính CM

\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)

\(BE\perp AC\)(giả thiết)

\(\Rightarrow\)\(MA//BH\) (1)

\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)

\(AH\perp BC\)(giả thiết)

\(\Rightarrow\)\(MB//AH\)(2)

Từ (1)(2):

\(\Rightarrow\)\(MAHB\)là hình bình hành.

\(\Rightarrow\)\(AH=BM\)

Do\(\widehat{BAC}=60^0\)

\(\Rightarrow BC=R\sqrt{3}\)

Áp dụng địn lí Pytago vào \(\Delta BMC\)

\(BM^2+BC^2=MC^2\)

\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)

\(\Leftrightarrow\)\(BM^2=R^2\)

\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)

\(\Rightarrow\)\(AH=BM=R\)

Mà \(AO=\frac{2R}{2}=R\)

\(\Rightarrow\)\(AH=AO\)

\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)