Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tb. Kéo dài BH cắt AC tại K
Vì H là điểm đối xứng của M qua BC (gt) => BC là đường trung trực của HM (định nghĩa đối xứng trục) => BH = BM (định lý thuận) => \(\Delta BHM\)cân tại B (định nghĩa) => BC là đường phân giác của \(\widehat{HBM}\)(định lý 1) => \(\widehat{CBM}=\widehat{CBH}\)\(=\widehat{CBK}\)(1)
Xét đường tròn (O) có: \(\widehat{CBM}=\widehat{CAM}(=\frac{1}{2}sđ\widebat{CM})\)(2)
Từ (1) và (2) => \(\widehat{CBK}=\widehat{CAM}=\widehat{CAD}\)(do A,D,M => \(\widehat{CAM}=\widehat{CAD}\)) (3)
Xét \(\Delta ACD\)có: \(\widehat{ACD}+\widehat{CAD}=90^o\)hay \(\widehat{KCB}+\widehat{CAD}=90^o\)(do A,K,C và B,D,C => \(\widehat{ACD}=\widehat{KCB}\)) (4)
Thay (3) vào (4) => \(\widehat{CBK}+\widehat{KCB}=90^o\)
Mà trong \(\Delta BCK\)thì : \(\widehat{CBK}+\widehat{KCB}+\widehat{BKC}=180^o\Rightarrow\widehat{BKC}=90^o\Rightarrow BK\perp AC\)=> BK là đường cao của \(\Delta ABC\)
Lại có H là giao điểm của AD và BK => H là trực tâm của \(\Delta ABC\)(đpcm)
c. Vì tứ giác BDME là tứ giác nội tiếp (cmt) => \(\widehat{MED}=\widehat{MBD}\left(=\frac{1}{2}sđ\widebat{MD}\right)\)= \(\widehat{MBC}\)(do B,D,C ) = \(\widehat{MAC}\)= \(\widehat{MAF}\)(do A,F,C )(5)
Tứ giác AEMF có: \(\widehat{AEM}+\widehat{AFM}=90^o+90^o=180^o\)(do ME\(\perp AB\)tại E (gt) => \(\widehat{AEM}=90^o\)và MF \(\perp AC\)tại F (gt) => \(\widehat{AFM}=90^o\))
=> Tứ giác AEMF là tứ giác nội tiếp( Dhnb) => \(\widehat{MEF}=\widehat{MAF}\)(cùng = \(\frac{1}{2}sđ\widebat{MF}\)) (6)
Từ (5) và (6) => \(\widehat{MED}=\widehat{MEF}\Rightarrow\)3 điểm E, D, F thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm
1: góc MDC=góc MEC=90 độ
=>MDEC nội tiếp
2: góc IBM=180 độ-góc ABM
=góc ACM=góc ECM=180 độ-góc EDM=góc IDM
=>IBDM nội tiếp
=>góc MIB+góc MDB=180 độ
=>góc MIB=90 độ
3:
Xét ΔAEM vuông tại E và ΔADC vuông tại D có
góc EAM chung
=>ΔAEM đồng dạng với ΔADC
=>AE/AD=AM/AC
=>AE*AC=AD*AM
Xét ΔADB vuông tại D và ΔAIM vuông tại I có
góc DAB chung
=>ΔADB đồng dạng với ΔAIM
=>AD/AI=AB/AM
=>AD*AM=AB*AI=AE*AC