Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c tm \(ab+bc+ca\le3abc\)
Cm \(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{3}{2}\)
Ta có: \(\frac{19a+3}{b^2+1}=\left(19a+3\right).\frac{1}{b^2+1}=\left(19a+3\right)\left(1-\frac{b^2}{b^2+1}\right)\)
\(\ge\left(19a+3\right)\left(1-\frac{b^2}{2b}\right)=\left(19a+3\right)\left(1-\frac{b}{2}\right)\)
\(=19a+3-\frac{19ab}{2}-\frac{3b}{2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{19b+3}{c^2+1}\ge19b+3-\frac{19bc}{2}-\frac{3c}{2}\)(2); \(\frac{19c+3}{a^2+1}\ge19c+3-\frac{19ca}{2}-\frac{3a}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(A=\frac{19a+3}{b^2+1}+\frac{19b+3}{c^2+1}+\frac{19c+3}{a^2+1}\)\(\ge19\left(a+b+c\right)-\frac{3\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)
\(=\frac{35\left(a+b+c\right)}{2}-\frac{19\left(ab+bc+ca\right)}{2}+9\)
\(\ge\frac{35.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{19.3}{2}+9=\frac{105}{2}-\frac{57}{2}+9=33\)
Đẳng thức xảy ra khi a = b = c = 1.
\(\left\{{}\begin{matrix}c^2-2ca+a^2+2ab-2bc=a^2\\c^2-2bc+b^2+2ab-2ac=b^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-c\right)^2+2b\left(a-c\right)=a^2\\\left(b-c\right)^2+2a\left(b-c\right)=b^2\end{matrix}\right.\)
\(\Rightarrow\frac{a^2+a^2-2ac+c^2}{b^2+b^2-2bc+c^2}=\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)
\(=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}=\frac{a-c}{b-c}\)