K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

Ta có: \(a^2+b=b^2+c\Rightarrow a^2-b^2=c-b\Rightarrow\left(a+b\right)\left(a-b\right)-\left(a-b\right)=c-a\Rightarrow\left(a+b-1\right)\left(a-b\right)=c-a\)(1)\(b^2+c=c^2+a\Rightarrow b^2-c^2=a-c\Rightarrow\left(b+c\right)\left(b-c\right)-\left(b-c\right)=a-b\Rightarrow\left(b+c-1\right)\left(b-c\right)=a-b\)(2)\(c^2+a=a^2+b\Rightarrow c^2-a^2=b-a\Rightarrow\left(c+a\right)\left(c-a\right)-\left(c-a\right)=b-c\Rightarrow\left(c+a-1\right)\left(c-a\right)=b-c\)(3)

Nhân ba vế của ba đẳng thức (1), (2), (3), ta được:\(\left(a+b-1\right)\left(a-b\right)\left(b+c-1\right)\left(b-c\right)\left(c+a-1\right)\left(c-a\right)=\left(c-a\right)\left(a-b\right)\left(b-c\right)\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(c+a-1\right)=1\)(Do a, b, c đôi mội khác nhau nên \(a-b,b-c,c-a\ne0\) )

8 tháng 11 2020

Ta có : 

a2 + b = b2 + c <=> a2 - b2 = c - b <=> ( a + b ) ( a - b ) = c - b

<=> \(a+b=\frac{c-b}{a-b}\)<=> \(a+b-1=\frac{c-a}{a-b}\)

b2 + c = c2 + a <=> b2 - c2 = a - c <=> ( b + c ) ( b - c ) = a - c

<=> \(b+c=\frac{a-c}{b-c}\)<=> \(b+c-1=\frac{a-b}{b-c}\)

a2 + b = c2 + a <=> a2 - c2 = a - b <=> ( a + c ) ( a - c ) = a - b

<=> \(a+c=\frac{a-b}{a-c}\)<=> \(a+c-1=\frac{c-b}{a-c}\)

Suy ra :

( a + b - 1 ) ( a + c - 1 ) ( a + c - 1 ) = \(\frac{c-a}{a-b}.\frac{a-b}{b-c}.\frac{c-b}{a-c}=-\frac{a-c}{a-b}.\frac{a-b}{b-c}.\left(-\frac{b-c}{a-c}\right)=1\)

17 tháng 6 2021

\(P=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}+\dfrac{c^2}{\left(c-b\right)\left(c-a\right)}\)

\(=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{-b^2}{\left(b-c\right)\left(a-b\right)}+\dfrac{c^2}{\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{a^2b-a^2c-ab^2+b^2c+c^2a-bc^2}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)\(=\dfrac{ab\left(a-b\right)-c\left(a^2-b^2\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{\left(a-b\right)\left(ab-c\left(a+b\right)+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)

\(=1\)

26 tháng 12 2021

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)

\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)

CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)

5 tháng 1 2022

Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?

 
17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

$a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ac+a^2)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2; (b-c)^2; (c-a)^2\geq 0$ với mọi $a,b,c$ nên để tổng của chúng bằng $0$ thì:

$a-b=b-c=c-a=0$

$\Rightarrow a=b=c$

$\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1$

Khi đó:

$(\frac{a}{b}+1)(\frac{b}{c}+1)(\frac{c}{a}+1)=(1+1)(1+1)(1+1)=8$ 

Ta có đpcm.

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

26 tháng 3 2018

Do a+b+c= 0

<=> a+b= -c 

=> (a+b)2= c2 

Tương tự: (c+a)2= b2, (c+b)2= a2   

Ta có: \(A=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)

\(=\frac{1}{b^2+c^2-\left(b+c\right)^2}+\frac{1}{c^2+a^2-\left(c+a\right)^2}+\frac{1}{a^2+b^2-\left(a+b\right)^2}\)

\(=\frac{1}{-2bc}+\frac{1}{-2ca}+\frac{1}{-2ab}\)

\(=\frac{a+b+c}{-2abc}=0\)

23 tháng 12 2020

Ta có: a+b+c=0

nên a+b=-c

Ta có: \(a^2-b^2-c^2\)

\(=a^2-\left(b^2+c^2\right)\)

\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)

\(=a^2-\left(b+c\right)^2+2bc\)

\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)

\(=2bc\)

Ta có: \(b^2-c^2-a^2\)

\(=b^2-\left(c^2+a^2\right)\)

\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)

\(=b^2-\left(c+a\right)^2+2ca\)

\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)

\(=2ac\)

Ta có: \(c^2-a^2-b^2\)

\(=c^2-\left(a^2+b^2\right)\)

\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)

\(=c^2-\left(a+b\right)^2+2ab\)

\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)

\(=2ab\)

Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(=\dfrac{a^3+b^3+c^3}{2abc}\)

Ta có: \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)\)

Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được: 

\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)

\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)

Vậy: \(M=\dfrac{3}{2}\)

11 tháng 3 2018

Ta có

D   =   a ( b 2   +   c 2 )   –   b ( c 2   +   a 2 )   +   c ( a 2   +   b 2 )   –   2 a b c     =   a b 2   +   a c 2   –   b c 2   –   b a 2   +   c a 2   +   c b 2   –   2 a b c     =   ( a b 2   –   a 2 b )   +   ( a c 2   –   b c 2 )   +   ( a 2 c   –   2 a b c   +   b 2 c )     =   a b ( b   –   a )   +   c 2 ( a   –   b )   +   c ( a 2   –   2 a b   +   b 2 )     =   - a b ( a   –   b )   +   c 2 ( a   –   b )   +   c ( a   –   b ) 2     =   ( a   –   b ) ( - a b   +   c 2   +   c ( a   –   b ) )     =   ( a   –   b ) ( - a b   +   c 2   +   a c   –   b c )     =   ( a   –   b ) [ ( - a b   +   a c )   +   ( c 2   –   b c ) ]

= (a – b)[a(c – b) + c(c – b)]

= (a – b)(a + c)(c – b)

Với a = 99; b = -9; c = 1, ta có

D = (99 - (-9))(99 + 1) (1 - (-9)) = 108.100.10 = 108000

Đáp án cần chọn là: B

10 tháng 6 2021

mới ăn miếng cơm cà ngon nhức nách luôn ai thèm cơm cà không điểm danh nào