Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}< \frac{a+n}{b+n}\) \(\left(1\right)\)
\(\Leftrightarrow a\left(b+n\right)< b\left(a+n\right)\)
\(\Leftrightarrow ab+an< ab+bn\)
\(\Leftrightarrow an< bn\)
\(Do.a< b\)nên an<bn\(\Rightarrow\)(1)
\(\frac{a}{b}>\frac{a+n}{b+n}\)\(\left(2\right)\)
\(\Leftrightarrow a\left(b+n\right)>b\left(a+n\right)\)
\(\Leftrightarrow ab+an>ab+bn\)
\(\Leftrightarrow an>bn\)
Do a>b nên \(\Rightarrow\)(2)
a) Ta có : \(\frac{a}{b}=\frac{a\left(b+c\right)}{b\left(b+c\right)}=\frac{ab+ac}{b\left(b+c\right)}\)
\(\frac{a+c}{b+c}=\frac{b\left(a+c\right)}{b\left(b+c\right)}=\frac{ab+bc}{b\left(b+c\right)}\)
Vì 0<a<b nên ab+ac<ab+bc
\(\Rightarrow\frac{ab+ac}{b\left(b+c\right)}>\frac{ab+bc}{b\left(b+c\right)}\)
hay \(\frac{a}{b}< \frac{a+c}{b+c}\)
Vậy \(\frac{a}{b}< \frac{a+c}{b+c}\)
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
bạn giải rõ cho mình với...mình cầu xin bạn đó Nguyễn Thị Hương
3n+2/ n-1 =3n-3+5/n-1=3 + 5/ n-1
Để phân số a nguyên
=>n-1 thuộc Ư(5)
=>n-1 thuoc {-5 ;-1 ;1 ;5 }
n thuộc {-4 ; 0 :2 :6}
Chú ý : Vì là lớp 6 nên giải zậy chứ lớp 9 là cách lm này là k chuẩn........( vì n không thuộc Z)
b,2B=1=1/2 +......+1/22015
2B-B=(1 +1/2 +.....+1/22015) - (1/2 +1/22+......+1/22016)
B=1 -1/22016
Vi 1-1/22016<1
=>B<1
a)
\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì 5 chia hết cho n-1
\(\Rightarrow n-1\in U\left(5\right)=+-1;+-5\)
lập bảng nhé!
b)
\(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(\Rightarrow B=\left(B-\frac{1}{2}B\right).2=\left(\frac{1}{2}-\frac{1}{2^{2017}}\right).2\)
\(\Rightarrow B=1-\frac{1}{2^{2016}}< 1\)
\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\) ; \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)
\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
a) Ta có hiệu của chúng là:
\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)
Mặt khác, ta lại có tích của chúng là:
\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\)
Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)
Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)
b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Bài làm:
Ta có: Áp dụng bất đẳng thức Cauchy dạng cộng mẫu (bạn có thể tham khảo các tài liệu để biết cách chứng minh)
\(\Rightarrow\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{\left(1+1+1\right)^2}{1+a+1+b+1+c}=\frac{3^2}{3+a+b+c}\ge\frac{3^2}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi: \(\frac{1}{1+a}=\frac{1}{1+b}=\frac{1}{1+c}\Rightarrow a=b=c=1\)
Vậy Min biểu thức bằng \(\frac{3}{2}\)khi \(a=b=c=1\)
Chúc bạn học tốt!