Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt[]{\dfrac{1}{ab}}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\) (1)
Ta có \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt[]{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt[]{ab}\)
\(\Rightarrow\dfrac{a+b}{2}\le\dfrac{2\sqrt[]{ab}}{2}\)
\(\Leftrightarrow\dfrac{a+b}{2}\le\sqrt[]{ab}\)
\(\Rightarrow\dfrac{2}{\dfrac{a+b}{2}}\le\dfrac{2}{\sqrt[]{ab}}\Leftrightarrow\dfrac{4}{a+b}\le\dfrac{2}{\sqrt[]{ab}}\) (2)
Từ (1) và (2) suy ra\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt[]{ab}}\ge\dfrac{4}{a+b}\)
hay \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
giả sử \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)(1) đúng
\(\Rightarrow\dfrac{a+b}{ab}\ge\dfrac{4}{a+b}\\ \Rightarrow\left(a+b\right)^2\ge4ab\)
\(a^2+2ab+b^2\ge4ab\)
trừ hai vế với 4ab, ta được:
\(a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
vì bất đẳng thức (2) luôn đúng nên bất đẳng thức (1) luôn đúng
dấu "=" xảy ra khi và chỉ khi a=b
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{\left(x-2\right)^2}{-\left(x-2\right)\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)^2}.\dfrac{-\left(x-2\right)}{\left(x+2\right)}\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\left(\dfrac{x}{x+2}-1\right):\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\dfrac{2}{x+2}:\dfrac{4}{x+2}\)
\(\Leftrightarrow A=\dfrac{1}{2}\)
\(A=\left(\dfrac{x}{x+2}+\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{4-x^2}\right):\dfrac{4}{x+2}=\left(\dfrac{x}{x+2}+\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{-\left(x-2\right)\left(2+x\right)}\right).\dfrac{x+2}{4}=\left(\dfrac{x\left(x+2\right)}{\left(x+2\right)^2}-\dfrac{\left(x^2+2x+4\right)}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\left(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}\right).\dfrac{x+2}{4}=\dfrac{-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}=-\dfrac{1}{x+2}\)
Ta có :
\(VT=\left(\dfrac{1}{2}xy-\dfrac{1}{3}y\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy^2+\dfrac{1}{9}y^2\right)\)
\(=\dfrac{1}{8}x^3y^3+\dfrac{1}{12}x^2y^3+\dfrac{1}{18}xy^3-\dfrac{1}{12}x^2y^3-\dfrac{1}{18}xy^3-\dfrac{1}{27}y^3\)
\(=\dfrac{1}{8}x^3y^3-\dfrac{1}{27}y^3=VT\)
\(\Rightarrow dpcm\)
Vậy : ..............
1.\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\)
=>\(\dfrac{a}{c}=\dfrac{b}{d}\)
=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
=>\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(a/d t/c của dãy tỉ số bằng nhau)
=>\(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
Đề bài sai
Ví dụ với \(a=b=c=0,1\)