Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`
Áp dụng bđt cosi với hai số dương:
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\) ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\) ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)
\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\) (*)
Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\) (2*)
Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)
=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều
=> Số đo các góc là 60 độ
1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0
theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :
2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )
\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Ta có a + b > c, b + c > a, a + c > b
Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
vậy ...
Bài 1 Câu hỏi của Trịnh Xuân Diện - Toán lớp 8 - Học toán với OnlineMath y hệt rút 2 ở tử ở VT chia cho VP là thành đề này
hình bạn tự vẽ
Tam giác ABC tương ứng với a,b,c độ dài các cạnh
từ B dựng đường thẳng song song với tia phân giác AD cắt đường thẳng CA tại E,ta có AE = AB = c
Do AD//BE nên \(\frac{x}{BE}=\frac{b}{b+c}\Rightarrow x=\frac{b}{b+c}.BE\)
Trong tam giác ABE ta có : EB < AB + AE = 2c
vì thế \(x< \frac{2bc}{b+c}\Rightarrow\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Tương tự : \(\frac{1}{y}>\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\); \(\frac{1}{z}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Cộng lại ta được đpcm
a) Gọi AD là tia phân giác của \(\widehat{BAC}\left(D\in BC\right)\)
Qua B vẽ đường thẳng song song với AD cắt AC tại M
Ta có: \(\widehat{ABM}=\widehat{BAD};\widehat{AMB}=\widehat{DAC}\)
Mà \(\widehat{BAD}=\widehat{DAC}\)(vì AD là phân giác \(\widehat{BAC}\))
=> \(\widehat{AMB}=\widehat{ABM}\) nên \(\Delta\)ABM cân tại A)
Từ đó có AM=AB=c. \(\Delta\)ABM có: MB<AM+AB=2c
\(\Delta\)ADC có: MB//AD, nên \(\frac{AD}{AB}=\frac{AC}{MC}\) (hệ quả định lý Ta-let)
do đó \(AD=\frac{AC}{MC}\cdot MB< \frac{AC}{AC+AM}\cdot2bc=\frac{2bc}{b+c}\)
b) Cmtt câu a) ta có: \(\hept{\begin{cases}y< \frac{2ca}{c+a}\\z< \frac{2ab}{a+b}\end{cases}}\)
Do đó: \(\hept{\begin{cases}\frac{1}{x}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{y}>\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\\\frac{1}{z}>\frac{1}{2}\left(\frac{1}{b}+\frac{1}{a}\right)\end{cases}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}\)
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\le\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\)
\(\Leftrightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}\le\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}+\frac{1}{a^2}-\frac{2}{ac}+\frac{1}{c^2}+\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\le0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{a}-\frac{1}{c}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{a}-\frac{1}{c}=0\\\frac{1}{b}-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\Rightarrow\Delta ABC\) đều
\(\Rightarrow\) Số đo 3 góc của tam giác đều bằng \(60^0\)