\(\frac{1}{1+a}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

30 tháng 7 2016

Vì a,b,c là các số tự nhiên lớn hơn 0 nên không mất tính tổng quát , ta giả sử \(a\ge b\ge c\ge1\)

Cần chứng minh \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)

bđt \(\Leftrightarrow\left(\frac{1}{1+a^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+b^2}-\frac{1}{1+abc}\right)+\left(\frac{1}{1+c^2}-\frac{1}{1+abc}\right)\ge0\)

Ta sẽ chứng minh mỗi biểu thức trong ngoặc đều không nhỏ hơn 0.

Ta xét : \(\frac{1}{1+a^2}-\frac{1}{1+abc}=\frac{1+abc-1-a^2}{\left(1+a^2\right)\left(1+abc\right)}=\frac{a\left(bc-a\right)}{\left(1+a^2\right)\left(1+abc\right)}\)

Vì \(a\ge b\ge c\ge1\)nên \(\frac{a}{b}\ge1,\frac{1}{c}\le1\Rightarrow\frac{a}{bc}\le1\Rightarrow bc\ge a\Rightarrow bc-a\ge0\Rightarrow a\left(bc-a\right)\ge0\) 

 Do đó \(\frac{1}{1+a^2}-\frac{1}{1+abc}\ge0\)(1)

Tương tự với các biểu thức trong các ngoặc còn lại , ta cũng có \(\frac{1}{1+b^2}-\frac{1}{1+abc}\ge0\)(2)

\(\frac{1}{1+c^2}-\frac{1}{1+abc}\ge0\)(3)

Từ (1), (2), (3) ta có đpcm.

30 tháng 7 2016

Biết chết liền đó tỷ àk

30 tháng 7 2016

nếu cần thiết thì nhắn cho mình mình giải cho

16 tháng 12 2018

\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\sqrt{1+\frac{1}{a^2}}+\sqrt{1+\frac{1}{b^2}}+\sqrt{1+\frac{1}{c^2}}\ge\sqrt{\left(1+1+1\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{3^2+3\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}=\sqrt{9+3}=\sqrt{12}=2\sqrt{3}\)

Dấu "=" xảy ra khi a=b=c=\(\sqrt{3}\)

9 tháng 10 2016

ko biết

3 tháng 2 2019

Ta có: \(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{abc}{abc+a^2\left(a+b+c\right)}}=\sqrt{\frac{bc}{ac+a^2+ab+ac}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng bđt Cô-si được

\(\frac{1}{\sqrt{1+a^2}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Thiết lập các bđt còn lại cho 2 số hạng còn lại rồi cộng vào được đpcm

NV
1 tháng 3 2022

\(\sqrt{a^2+\dfrac{1}{b+c}}=\dfrac{2}{\sqrt{17}}\sqrt{\left(4+\dfrac{1}{4}\right)\left(a^2+\dfrac{1}{b+c}\right)}\ge\dfrac{2}{\sqrt{17}}\left(2a+\dfrac{1}{2\sqrt{b+c}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)

Mặt khác:

\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(4a+4b+4c+\dfrac{9}{\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}\left(a+b+c\right)+\dfrac{a+b+c}{8}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}+\dfrac{9}{2\sqrt{6\left(a+b+c\right)}}\right)\)

\(\Rightarrow A\ge\dfrac{1}{\sqrt{17}}\left(\dfrac{31}{8}.6+3\sqrt[3]{\dfrac{81\left(a+b+c\right)}{32.6.\left(a+b+c\right)}}\right)=\dfrac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra khi \(a=b=c=2\)

NV
15 tháng 10 2019

\(P=\left(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{1-xy}\right):\left(\frac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\left(\frac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\frac{\left(x+1\right)\left(y+1\right)}{1-xy}\right)\)

\(=\frac{2\sqrt{x}\left(y+1\right)}{\left(1-xy\right)}.\frac{\left(1-xy\right)}{\left(x+1\right)\left(y+1\right)}=\frac{2\sqrt{x}}{x+1}\)

\(x=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}-1\)

\(\Rightarrow P=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}=\frac{2+6\sqrt{3}}{13}\)

Ta có \(1-P=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{\left(\sqrt{x}-1\right)^2}{x+1}\ge0\) \(\forall x\ge0\)

\(\Rightarrow1-P\ge0\Rightarrow P\le1\)

20 tháng 7 2021

\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)

\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)

vậy cả hai bđt dấu "=" xảy ra đồng thời

\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)

vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)

\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng

và bđt tương đương xảy ra dấu bằng

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)

\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)

\(0>2ab\)

\(ab< 0\)

rồi chia ra từng TH 

ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)

\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)

\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi 

bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)

\(< =>0\ge2ab\)

vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra

vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

câu d lập luận như các câu trên cậu làm nốt nha