Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)
\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)
\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)
do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)
\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)
a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)
\(+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
Ta chứng minh \(4\left(a^3+b^3+c^3\right)+15abc\ge\left(a+b+c\right)^3\)
\(\Leftrightarrow3\left(a^3+b^3+c^3\right)+9abc\ge3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)
BĐT trên đúng theo BĐT Schur
\(\Rightarrow VT\ge\left(a+b+c\right)^3=2^3=8=VP\)
Đẳng thức xảy ra khi \(a=b=c=\frac{2}{3}\)
Vì a,b,c là độ dài ba cạnh của một tam giác nên a,b,c > 0
Áp dụng bđt Cauchy : \(b^2+1\ge2\sqrt{b^2}=2\left|b\right|=2b\)\(\Rightarrow a\left(1+b^2\right)\ge2ab\)
Tương tự : \(b\left(1+c^2\right)\ge2bc\) , \(c\left(1+a^2\right)\ge2ac\)
Cộng các bđt trên ta được đpcm
a/ \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\ge6abc\)
\(\Leftrightarrow a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6abc\)
\(\Leftrightarrow\left(a^2-2abc+b^2c^2\right)+\left(b^2-2abc+a^2c^2\right)+\left(c^2-2abc+a^2b^2\right)\ge0\)
\(\Leftrightarrow\left(a-bc\right)^2+\left(b-ac\right)^2+\left(c-ab\right)^2\ge0\) (luôn đúng)
Vậy bđt được chứng minh.
Đặt \(\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\)
Khi đó, \(x,y,z\) dương và ta cần c/m:
\(\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)\)
\(\ge8Σ\left(y-z\right)\left(2x+y+z\right)\left(2y+x+z\right)\)
Hay \(Σ\left(2x^3+15x^2y-x^2z+\frac{16}{3}xyz\right)\ge0\)
Nó hiển nhiên đúng vì \(x^3+y^3+z^3\ge x^2z+y^2x+z^2y\) theo BĐT Rearrangement
a/ Ta có:
\(\sqrt{\left(a+b-c\right)\left(b+c-a\right)}\le\frac{a+b-c+b+c-a}{2}=b\left(1\right)\)
Tương tự ta có:
\(\hept{\begin{cases}\sqrt{\left(a+b-c\right)\left(c+a-b\right)}\le a\left(2\right)\\\sqrt{\left(b+c-a\right)\left(c+a-b\right)}\le c\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế ta được
\(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)
a ) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tương tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!