Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tường tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)\)
\(+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
a ) Theo bất đẳng thức tam giác ta có :
\(\Rightarrow\hept{\begin{cases}a< b+c\\b< c+a\\c< a+b\end{cases}\left(1\right)}\)
Ta có : \(a+b+c=2\)
\(\Rightarrow\hept{\begin{cases}b+c=2-a\\a+b=2-c\\a+c=2-b\end{cases}\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow\hept{\begin{cases}a< 2-a\\b< 2-b\\c< 2-c\end{cases}\Rightarrow\hept{\begin{cases}2a< 2\\2b< 2\\2c< 2\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a< 1\\b< 1\\c< 1\end{cases}\left(đpcm\right)}\)
b ) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left(a+b-c\right)\left(c+a-b\right)\le\left(\frac{2a}{2}\right)^2=a^2\)
Tương tự ta có : \(\hept{\begin{cases}\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(b+c-a\right)\left(c+a-b\right)\le c^2\end{cases}}\)
\(\Rightarrow\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)
\(\Rightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow9abc\ge8\left(ab+bc+ca\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(ab+bc+ca\right)+4\left(a^2+b^2+c^2\right)-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge4\left(a+b+c\right)^2-8\)
\(\Leftrightarrow9abc+4\left(a^2+b^2+c^2\right)\ge8\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\frac{2}{3}\)
Chúc bạn học tốt !!!
a,b,c là độ dài 3 cạnh của một tam giác nên a < b + c
\(\Leftrightarrow2a< a+b+c\Leftrightarrow2a< 2\Leftrightarrow a< 1\)
Chứng minh tương tự: b < 1; c < 1
\(\Rightarrow\hept{\begin{cases}1-a>0\\1-b>0\\1-c>0\end{cases}}\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)
\(\Leftrightarrow1-c-b+bc-a+ac+ab-abc>0\)
\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ac>abc\)
\(\Leftrightarrow1-2+ab+bc+ac>abc\)
\(\Leftrightarrow abc< -1+ab+bc+ac\)
\(\Leftrightarrow2abc< -2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< -2+2ab+2bc+2ac+a^2+b^2+c^2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2^2-2\)
\(\Leftrightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)
ta có BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)(chứng minh = AM-GM)
\(abc\ge\left(2-2a\right)\left(2-2b\right)\left(2-2c\right)=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(abc\ge8\left[1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\right]\)
\(\Leftrightarrow9abc\ge-8+8\left(ab+bc+ca\right)\)
do đó \(VT\ge4\left(a^2+b^2+c^2\right)+8\left(ab+bc+ca\right)-8\)
\(VT\ge4\left(a+b+c\right)^2-8=16-8=8\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)