Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)
\(\Rightarrowđpcm\)
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)
Dấu "=" \(\Leftrightarrow a=b=1\)
Ý 3 bạn bỏ dòng áp dụng....ta có nhé
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )
Dấu " = " xảy ra <=> a=b=c=d=0
6) Sai đề
Sửa thành:\(x^2-4x+5>0\)
\(\Leftrightarrow\left(x-2\right)^2+1>0\)
7) Áp dụng BĐT AM-GM ta có:
\(a+b\ge2.\sqrt{ab}\)
Dấu " = " xảy ra <=> a=b
\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)
Chứng minh tương tự ta có:
\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)
\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)
Dấu " = " xảy ra <=> a=b=c
Cộng vế với vế của các BĐT trên ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)
Dấu " = " xảy ra <=> a=b=c
1)\(x^3+y^3\ge x^2y+xy^2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )
\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)
Dấu " = " xảy ra <=> x=y
2) \(x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
3) Áp dụng BĐT AM-GM ta có:
\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)
\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)
\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)
Cộng vế với vế của các bất đẳng thức trên ta được:
\(a^2+b^2+1\ge ab+a+b\)
Dấu " = " xảy ra <=> a=b=1
4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)
Dấu " = " xảy ra <=> a=b=c=1/2
\(1,\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\Leftrightarrow x^2-2xy+y^2\ge0\))
\(\Leftrightarrow\left(x+y\right)^2\ge o\)
Trừ 2 vế đc
\(a^2+b^2+c^2-2ab-2bc+2ac-4ac\)
\(=\left(b-a-c\right)^2-4ac\)
\(=\left(b-a-c-2\sqrt{ac}\right)\left(b-a-c+2\sqrt{ac}\right)\)(*)
Ta có: \(b< a+c\Rightarrow b-a-c< 0\) lại có: \(2\sqrt{ab}\ge0\) nên
\(b-a-c-2\sqrt{ac}< 0\)(1)
Ta lại có: \(b>a+c\ge a+c-2\sqrt{ac}\left(2\sqrt{ac}\ge0\right)\)
\(\Rightarrow b-a-c+2\sqrt{ac}>0\)(2)
Từ (1) và (2) suy ra (*)<0 suy ra ĐPCM
a) Xét hiệu ta có:
\(a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}.\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\); \(\left(b-c\right)^2\ge0\forall b,c\); \(\left(a-c\right)^2\ge0\forall a,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\forall a,b,c\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(a^2+c^2\ge2ca\)
Cộng theo từng vế ba bđt trên,ta được:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Dấu "="xảy ra khi a=b=c
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho a+b)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)đúng với mọi a,b
Dấu"=" xảy ra khi a=b
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)đúng với mọi a,b,c
Dấu"=" xảy ra khi a=b=c=0
\(\frac{bc}{a^2+1}=\frac{bc}{a^2+b^2+a^2+c^2}\le\frac{1}{2}\sqrt{\frac{b^2c^2}{\left(a^2+b^2\right)\left(a^2+c^2\right)}}\le\frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Tương tự:
\(\frac{ac}{b^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\right)\) ; \(\frac{ab}{c^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
ta có
a. \(ab+bc+ac\le a^2+b^2+c^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\) luôn đúng
mà ta lại có :
\(\hept{\begin{cases}a^2< a\left(b+c\right)\\b^2< b\left(a+c\right)\\c^2< c\left(a+b\right)\end{cases}\Rightarrow a^2+b^2+c^2\le2\left(ab+bc+ac\right)}\) vậy ta có điều phải chứng minh.
b. ta có :
\(\hept{\begin{cases}\left(a+b-c\right)\left(a+c-b\right)\le\left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2\\\left(a+b-c\right)\left(b+c-a\right)\le b^2\\\left(a+c-b\right)\left(b+c-a\right)\le c^2\end{cases}}\)
nhân lại ta sẽ có : \(\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\le abc\) vậy ta có dpcm