\(M=\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

đặt \(b+c-a=x;a+c-b=y;a+b-c=z\)

=> \(\hept{\begin{cases}a=\frac{y+z}{2}\\b=\frac{z+x}{2}\\c=\frac{x+y}{2}\end{cases}}\)

nên \(M=\frac{1}{2}\left[\frac{4\left(y+z\right)}{x}+\frac{9\left(z+x\right)}{y}+\frac{16\left(x+y\right)}{z}\right]\)

            \(=\frac{1}{2}\left(\frac{4y}{x}+\frac{4z}{x}+\frac{9z}{y}+\frac{9x}{y}+\frac{16x}{z}+\frac{16y}{z}\right)\)

Áp dụng bất đẳng thức cô si ta có 

\(\frac{4y}{x}+\frac{9x}{y}\ge2.\sqrt{\frac{4y.9x}{xy}}=12\)

\(\frac{4z}{x}+\frac{16x}{z}\ge2\sqrt{\frac{4z.16x}{xz}}=2.8=16\)

\(\frac{16y}{z}+\frac{9z}{y}\ge2\sqrt{\frac{16y.9z}{yz}}=2.12=24\)

cộng vào ta có 

\(M\ge\frac{1}{2}\left(12+16+24\right)=26\)

=> \(M\ge26\)

11 tháng 8 2020

CÁCH KHÁC NÈ MỌI NGƯỜI !!!!!!

\(M+14,5=\frac{4a}{b+c-a}+2+\frac{9b}{a+c-b}+4,5+\frac{16c}{a+b-c}+8\)

=> \(M+14,5=\frac{4a+2\left(b+c-a\right)}{b+c-a}+\frac{9b+4,5\left(a+c-b\right)}{a+c-b}+\frac{16c+8\left(a+b-c\right)}{a+b-c}\)

=> \(M+14,5=\frac{2\left(a+b+c\right)}{b+c-a}+\frac{4,5\left(a+b+c\right)}{a+c-b}+\frac{8\left(a+b+c\right)}{a+b-c}\)

=> \(M+14,5=\left(a+b+c\right)\left(\frac{2}{b+c-a}+\frac{4,5}{a+c-b}+\frac{8}{a+b-c}\right)\)

=> \(M+14,5\ge\frac{\left(a+b+c\right)\left(\sqrt{2}+\sqrt{4,5}+\sqrt{8}\right)^2}{a+b-c+b+c-a+c+a-b}\)     (BĐT CAUCHY - SCHWARZ)

=> \(M+14,5\ge\frac{a+b+c}{a+b+c}.40,5\)

=> \(M+14,5\ge40,5\)

=> \(M\ge40,5-14,5=26\)

VẬY GIÁ TRỊ NHỎ NHẤT CỦA M LÀ 26.

17 tháng 7 2017

c)

\(C=4x+\frac{25}{x-1}=\left(4x-4\right)+\frac{25}{x-1}+4=4\left(x-1\right)+\frac{25}{x-1}+4\)

\(\Rightarrow C\ge2\sqrt{4\left(x-1\right).\frac{25}{x-1}}+4=20+4=24\)

Dấu "=" xảy ra khi \(4\left(x-1\right)=\frac{25}{x-1}\Leftrightarrow4\left(x-1\right)^2=25\Leftrightarrow2\left(x-1\right)=5\)(  Vì \(x>1\))

                                                                                                     \(\Leftrightarrow x=\frac{7}{2}\)

                    Vậy \(Min_C=24\)

17 tháng 7 2017

a)

\(A=x^2+xy+y^2-3x-3y+2017\)

\(\Leftrightarrow A=\left(x^2+xy+\frac{y^2}{4}\right)-3x-\frac{3}{2}y+\frac{3y^2}{4}-\frac{3}{2}y+2017\)

\(\Leftrightarrow A=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+\left(\frac{3y^2}{4}-\frac{3}{2}y+\frac{3}{4}\right)-\frac{9}{4}-\frac{3}{4}+2017\)

\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y^2}{4}-\frac{1}{2}y+\frac{1}{4}\right)+2014\)

\(\Leftrightarrow A=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2+2014\)\(\ge2014\)\(\forall x,y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy \(Min_A=2014\)khi    \(x=y=1\)

27 tháng 5 2019

1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0

theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :

2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )

\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

27 tháng 5 2019

Ta có a + b > c, b + c > a, a + c > b

Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)

vậy ...

27 tháng 5 2020

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi tam giác đó là tam giác đều

18 tháng 11 2017

Đặt a+b-c=x

       b+c-a=y

      c+a-b=z

\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)

Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0

\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)

\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)

\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)

\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\)  (Do x;y;z>0)

\(\Rightarrow A\ge a+b+c\)