K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Ký hiệu: 

AB=c; AC=b; cạnh huyền BC=a; đường cao CH=h Ta có

Xét hai t/g vuông AHC và ABC có

\(\widehat{C}\)chung

\(\widehat{CAH}=\widehat{ABC}\)(cùng phụ với \(\widehat{C}\))

=> t/g AHC đồng dạng với ABC \(\Rightarrow\frac{b}{a}=\frac{h}{c}\Rightarrow bc=ah\)

Xét t/g vuông ABC có

\(b^2+c^2=a^2\Rightarrow\left(b+c\right)^2=a^2+2bc\)

\(\Rightarrow\left(b+c\right)^2=a^2+2ah\)( bc=ah chứng minh trên)

\(\Rightarrow\left(b+c\right)^2=\left(a^2+2ah+h^2\right)-h^2=\left(a+h\right)^2-h^2\)

\(\Rightarrow\left(b+c\right)^2+h^2=\left(a+h\right)^2\)

=> b+c; a+h; h là 3 cạnh của tam giác vuông trong đó cạnh huyền là a+h

15 tháng 8 2017

Sorry!!!

Phần ký hiệu sửa thành 

Đường cao AH=h

3 tháng 9 2018

Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)

\(\Rightarrow c^2-2ab\ge0\)

\(\Leftrightarrow c^2\ge2ab\)

\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)

\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM ) 

3 tháng 9 2018

Ta có a+b \(\le\)c√2

<=> (a+b) 2\(\le\)(c√2)2

<=> a2+2ab+b2\(\le\)2c2

<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2

<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)

=> a+b \(\le\)c√2

8 tháng 1 2021

\(P=\dfrac{ab\left(a+b\right)+c\left(a^2+b^2\right)}{abc}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{c}=\dfrac{a^2+b^2}{ab}+\dfrac{a+b}{\sqrt{a^2+b^2}}\).

Áp dụng bất đẳng thức AM - GM:

\(P\ge\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{ab}}{\sqrt{a^2+b^2}}=\left(\dfrac{a^2+b^2}{ab}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}+\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}\right)-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{a^2+b^2}}\ge3\sqrt[3]{\dfrac{a^2+b^2}{ab}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}.\dfrac{2\sqrt{2ab}}{\sqrt{a^2+b^2}}}-\dfrac{\left(4\sqrt{2}-2\right)\sqrt{ab}}{\sqrt{2ab}}=6-\left(4-\sqrt{2}\right)=2+\sqrt{2}\).

Đẳng thức xảy ra khi và chỉ khi tam giác ABC vuông cân tại A.

 

Bài 2: 

Gọi tam giác vuông đo là ΔABC vuông tại A có AH là đường cao 

Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{49}\)

\(\Leftrightarrow HB=\dfrac{9}{49}HC\)

Ta có: \(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC^2=42^2:\dfrac{9}{49}=9604\)

\(\Leftrightarrow HC=98\left(cm\right)\)

\(\Leftrightarrow HB=42cm\)

29 tháng 11 2021

Diện tích hình vuông cạnh c là \(S=c^2\)

Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)

Xét tg vuông có \(c^2=a^2+b^2\)

Áp dụng cosi có

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)

\(\Rightarrow S\ge S_1\left(dpcm\right)\) 

\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân

13 tháng 5 2022

Cảm ơn bạn nhiều ạ :DD