\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

Áp dụng BĐT của tam giác ta có :

\(\left(b-c\right)< a=\left(b-c\right)^2< a^2=a^2-\left(b-c\right)^2\le a^2=\left(a+b-c\right)\left(a-b+c\right)\le a^2\)

\(\left(a-c\right)< b=\left(a-c\right)^2< b^2=b^2-\left(a-c\right)^2\le b^2=\left(b+a-c\right)\left(b-a+c\right)\le b^2\)

\(\left(a-b\right)< c=\left(a-b\right)^2< c^2=c^2-\left(a-b\right)^2\le c^2=\left(c+a-b\right)\left(c-a+b\right)\le c^2\)

\(\Leftrightarrow\left(a+b-c\right)^2\left(a-b+c\right)^2\left(-a+b+c\right)^2\le a^2b^2c^2\)

\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)

Chúc bạn học giỏi

24 tháng 8 2017

Áp dụng BĐT Cô si ta có:
\(\sqrt{\left(a+b-c\right)\left(a-b+c\right)}\le\dfrac{a+b-c+a-b+c}{2}=\dfrac{2a}{2}=a\)

Tương tự ta có \(\sqrt{\left(a-b+c\right)\left(-a+b+c\right)}\le c;\sqrt{\left(-a+b+c\right)\left(a+b-c\right)}\le b\)

Nhân vế với vế của 3 BĐT trên ta đc đpcm

Dấu '=' xảy ra khi \(a=b=c\)

30 tháng 3 2017

Hỏi gì vậy bạn

14 tháng 4 2017

Vì a,b,c là 3 cạnh của một tam giác nên ta có:

a>0 \(\Rightarrow\)a<b+c \(\Rightarrow\)a+a<a+b+c\(\Rightarrow\)2a<a+b+c (1)

b>0 \(\Rightarrow\)b<c+a \(\Rightarrow\)b+b<a+b+c\(\Rightarrow\)2b<a+b+c (2)

c>0 \(\Rightarrow\)c<a+b \(\Rightarrow\)c+c<a+b+c\(\Rightarrow\)2c<a+b+c (3)

Từ (1);(2);(3) \(\Rightarrow\)\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

14 tháng 4 2017

\(\frac{a}{b+c}\)+\(\frac{b}{c+a}\)\(\frac{c}{a+b}\)

=\(\frac{a}{b}\)+\(\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}+\frac{c}{b}\)

=\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)

Vì hai p/s nghịch đảo luôn lớn hơn hoặc bằng 2(lên lớp 8 sẽ có công thức)

nên nó phải luôn lớn hơn hoặc bằng 2

13 tháng 4 2017

Vì a ; b ; c là độ dài 3 cạnh của tam giác nên ta có : \(\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\) (BĐT tam giác)

\(\Rightarrow\frac{a}{b+c}< 1\Rightarrow\frac{a}{b+c}< \frac{2a}{a+b+c}\) (1)

\(\Rightarrow\frac{b}{a+c}< 1\Rightarrow\frac{b}{a+c}>\frac{2b}{a+b+c}\) (2)

\(\Rightarrow\frac{c}{a+b}< 1\Rightarrow\frac{c}{a+b}< \frac{2c}{a+b+c}\) (3)

Cộng các vế tương ứng của (1) ; (2) ; (3) lại ta được :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (ĐPCM)

17 tháng 10 2017

ADTCDTSBN:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

vi  \(\frac{1}{2}\)<2=>\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< 2\)

12 tháng 6 2020

Bạn xem lại đề nhé!

Mình chứng minh lỗi sai của bạn:

a, b, c là 3 cạnh của 1 tam giác vuông với c là cạnh huyền 

=> \(a^2+b^2=c^2\Leftrightarrow\left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

Mà \(a< c;b< c\Rightarrow\frac{a}{c}< 1;\frac{b}{c}< 1\)

=> \(\left(\frac{a}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2;\left(\frac{b}{c}\right)^{2020}< \left(\frac{b}{c}\right)^2\)

=> \(\left(\frac{a}{c}\right)^{2020}+\left(\frac{b}{c}\right)^{2020}< \left(\frac{a}{c}\right)^2+\left(\frac{b}{c}\right)^2=1\)

=> \(a^{2020}+b^{2020}< c^{2020}\)

Bạn vẫn nên xem lại đề nha!

10 tháng 7 2016

bài này ta sẽ phải vận dụng linh hoạt hằng đẳng thức hiệu 2 bình phương là chính: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2=\left(2bc\right)^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right).\left(2bc+b^2+c^2-a^2\right)\)

\(=\left(a^2+2bc-b^2-c^2\right)\left(2bc+b^2+c^2-a^2\right)=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)\)

Vì a,b,c là độ dài 3 cạnh của tam giác nên theo bất đẳng thức tam giác: 

+a+c > b => a+c-b > 0

+b+c > a=>b+c-a > 0

+a+b+c và b+c+a hiển hiên đều lớn hơn 0

Nên \(\left(a-b+c\right)\left(a+b+c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)

\(=>4b^2c^2-\left(b^2+c^2-a^2\right)^2>0\left(đpcm\right)\)

8 tháng 3 2015

Vì a, b, c là 3 cạnh tam giác nên a, b, c >0 và a <b+c ; b< c+a, c < a+b

Dùng bđt với x, y > 0 ; x< y(  tức x/y < 1) ta có x /y < x +m < y+m :

ta có a>0 ; b+c>0 và a < b+c => a/ b+c < a +a/a+b+c = 2a/a+b+c

tương tự b/c+a < 2b/a+b+c ; c/a+b <2c/a+b+c

Cộng từng vế 3 bđt trên sẽ ra bn nhé.