K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c})^2\leq (p-a+p-b+p-c)(1+1+1)=3(3p-a-b-c)=3(3p-2p)=3p$

$\Rightarrow \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\leq \sqrt{3p}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

9 tháng 12 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)

Vì \(\sqrt{p}>0\) nên ta có điều tương đương \(p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< \left(3p-a-b-c\right)+2\left(\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}\right)\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng BĐT Bunhiacopxki, ta được : \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le3\left(p-a+p-b+p-c\right)\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Vậy có đpcm.

28 tháng 11 2019

Áp dụng BĐT Bu- nhi - a:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(p-a+p-b+p-c\right)}\)

\(=\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)(Vì p là nửa chu vi nên \(a+b+c=2p\))

28 tháng 11 2019

Dấu "="\(\Leftrightarrow a=b=c\)hay tam giác ABC đều

14 tháng 10 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)

Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)

\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

21 tháng 1 2016

Bất đẳng thức trên tương đương với 

[(p-a)1/2  +(p-b) 1/2  +(p-c)1/2 ] 2  \(\le\)  3p \(\Leftrightarrow\) p-a+p-b+p-c +2 [ (p-a)1/2(p-b)1/2 + (p-b)1/2(p-c)1/2 + (p-c)1/2(p-a)1/2]\(\le\)3p

 \(\Leftrightarrow\) (p-a)1/2(p-b)1/2 + (p-b)1/2(p-c)1/2 + (p-c)1/2(p-a)1/2\(\le\)p

Theo bất đảng thức cosi thì   (p-a)1/2(p-b)1/2 \(\le\)[(p-a)+(p-b)]/2=c/2; Tương tự (p-b)1/2(p-c)1/2 \(\le\)a/2; (p-c)1/2(p-a)1/\(\le\)b/2; 

Cộng tất cả các vế lại ta được điều phải chứng minh

 

3 tháng 9 2018

Ta có :\(\left(a-b\right)^2\ge0\forall a,b\)

         \(\Leftrightarrow a^2-2ab+b^2\ge0\)

Mà \(a^2+b^2=c^2\left(Py-ta-go\right)\)

\(\Rightarrow c^2-2ab\ge0\)

\(\Leftrightarrow c^2\ge2ab\)

\(\Leftrightarrow2c^2\ge a^2+b^2+2ab\)( Do c2=a2+b2)

\(\Leftrightarrow2c^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow c\sqrt{2}\ge a+b\)( ĐPCM ) 

3 tháng 9 2018

Ta có a+b \(\le\)c√2

<=> (a+b) 2\(\le\)(c√2)2

<=> a2+2ab+b2\(\le\)2c2

<=> a2+2ab+b2 \(\le\)2(a2+b2) = 2a2+2b2

<=> 0 \(\le\)a2-2ab+b2 = (a-b)2 ( luôn đúng)

=> a+b \(\le\)c√2

30 tháng 8 2017

Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)

Đặt \(x=b+c-a>0\)

      \(y=a+c-b>0\)

     \(z=a+b-c>0\)

\(\Rightarrow a=\frac{"y+z"}{2}\)

\(\Rightarrow b=\frac{"x+z"}{2}\)

\(\Rightarrow c=\frac{"x+y"}{2}\)

\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)

\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)

\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)

Áp dụng công thức bdt Cauchy cho 2 số :

\(\frac{x}{y}+\frac{y}{x}\ge2\)

\(\frac{x}{z}+\frac{z}{x}\ge2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\)

Cộng 3 bdt trên, suy ra :

\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)

\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"

P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé